cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242903 G.f. A(x) satisfies: coefficient of x^n in A(x)^(2*n) equals A000172(n) = Sum_{k=0..n} C(n,k)^3, the n-th Franel number.

Original entry on oeis.org

1, 1, 1, 1, 3, 8, 26, 89, 324, 1225, 4786, 19170, 78408, 326275, 1377772, 5891401, 25467509, 111144579, 489145720, 2168854885, 9681072845, 43473716527, 196286934526, 890640262188, 4059500301390, 18579693200838, 85360357637580, 393548515741979, 1820335724153452, 8445294476235727, 39291407672079211
Offset: 0

Views

Author

Paul D. Hanna, May 25 2014

Keywords

Examples

			G.f.: A(x) = 1 + x + x^2 + x^3 + 3*x^4 + 8*x^5 + 26*x^6 + 89*x^7 + 324*x^8 +...
Form a table of coefficients in A(x)^(2*n) as follows:
[1,  0,   0,    0,    0,     0,      0,      0,       0,       0, ...];
[1,  2,   3,    4,    9,    24,     75,    252,     903,    3376, ...];
[1,  4,  10,   20,   43,   108,    316,   1020,    3537,   12908, ...];
[1,  6,  21,   56,  138,   354,   1002,   3120,   10485,   37318, ...];
[1,  8,  36,  120,  346,   960,   2756,   8448,   27723,   96440, ...];
[1, 10,  55,  220,  735,  2252,   6785,  21020,   68340,  233870, ...];
[1, 12,  78,  364, 1389,  4716,  15184,  48588,  159186,  541424, ...];
[1, 14, 105,  560, 2408,  9030,  31304, 104960,  351792, 1203244, ...];
[1, 16, 136,  816, 3908, 16096,  60184, 213152,  739162, 2570464, ...];
[1, 18, 171, 1140, 6021, 27072, 109047, 409500, 1480293, 5280932, ...]; ...
then the main diagonal forms the Franel numbers:
[1, 2, 10, 56, 346, 2252, 15184, 104960, 739162, 5280932, ...].
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(sqrt(x/serreverse(x*exp(sum(m=1, n+1, sum(k=0, m, binomial(m, k)^3)*x^m/m +x^2*O(x^n))))),n)}
    for(n=0,30,print1(a(n),", "))

Formula

G.f.: sqrt( x / Series_Reversion( x*exp( Sum_{n>=1} A000172(n)*x^n/n ) ) ), where A000172(n) is the n-th Franel number.
[x^n] A(x)^(2*n+2) = (n+1)*A166990(n).
Convolution square-root of A088220.