A242903 G.f. A(x) satisfies: coefficient of x^n in A(x)^(2*n) equals A000172(n) = Sum_{k=0..n} C(n,k)^3, the n-th Franel number.
1, 1, 1, 1, 3, 8, 26, 89, 324, 1225, 4786, 19170, 78408, 326275, 1377772, 5891401, 25467509, 111144579, 489145720, 2168854885, 9681072845, 43473716527, 196286934526, 890640262188, 4059500301390, 18579693200838, 85360357637580, 393548515741979, 1820335724153452, 8445294476235727, 39291407672079211
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x + x^2 + x^3 + 3*x^4 + 8*x^5 + 26*x^6 + 89*x^7 + 324*x^8 +... Form a table of coefficients in A(x)^(2*n) as follows: [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...]; [1, 2, 3, 4, 9, 24, 75, 252, 903, 3376, ...]; [1, 4, 10, 20, 43, 108, 316, 1020, 3537, 12908, ...]; [1, 6, 21, 56, 138, 354, 1002, 3120, 10485, 37318, ...]; [1, 8, 36, 120, 346, 960, 2756, 8448, 27723, 96440, ...]; [1, 10, 55, 220, 735, 2252, 6785, 21020, 68340, 233870, ...]; [1, 12, 78, 364, 1389, 4716, 15184, 48588, 159186, 541424, ...]; [1, 14, 105, 560, 2408, 9030, 31304, 104960, 351792, 1203244, ...]; [1, 16, 136, 816, 3908, 16096, 60184, 213152, 739162, 2570464, ...]; [1, 18, 171, 1140, 6021, 27072, 109047, 409500, 1480293, 5280932, ...]; ... then the main diagonal forms the Franel numbers: [1, 2, 10, 56, 346, 2252, 15184, 104960, 739162, 5280932, ...].
Programs
-
PARI
{a(n)=polcoeff(sqrt(x/serreverse(x*exp(sum(m=1, n+1, sum(k=0, m, binomial(m, k)^3)*x^m/m +x^2*O(x^n))))),n)} for(n=0,30,print1(a(n),", "))