A242904 a(n+1) is the smallest prime > a(n) such that the digits of a(n) are all (with multiplicity) contained in the digits of a(n+1), with a(1)=2.
2, 23, 223, 1223, 2213, 3221, 10223, 12203, 20123, 20231, 21023, 22013, 22031, 23021, 23201, 102023, 102203, 200231, 201203, 202031, 220013, 220301, 300221, 322001, 1002263, 1002623, 1060223, 1062203, 1202063, 1202603, 1600223, 2002361, 2002613, 2003621
Offset: 1
Programs
-
Maple
with(numtheory):lst:={2}:nn:=150000:x0:=convert(2,base,10):n0:=nops(x0): for n from 2 to nn do: p:=ithprime(n):x:=convert(p,base,10): x1:=x:n1:=nops(x):c:=0: for i from 1 to n0 do: ii:=0: for j from 1 to n1 while(ii=0)do: if x0[i]=x[j] then c:=c+1:x[j]:=99:ii:=1: else fi: od: od: if c=n0 then lst:=lst union {p}:n0:=n1:x0:=x1: else fi: od: print(lst):