cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A242904 a(n+1) is the smallest prime > a(n) such that the digits of a(n) are all (with multiplicity) contained in the digits of a(n+1), with a(1)=2.

Original entry on oeis.org

2, 23, 223, 1223, 2213, 3221, 10223, 12203, 20123, 20231, 21023, 22013, 22031, 23021, 23201, 102023, 102203, 200231, 201203, 202031, 220013, 220301, 300221, 322001, 1002263, 1002623, 1060223, 1062203, 1202063, 1202603, 1600223, 2002361, 2002613, 2003621
Offset: 1

Views

Author

Michel Lagneau, May 26 2014

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory):lst:={2}:nn:=150000:x0:=convert(2,base,10):n0:=nops(x0):
      for n from 2 to nn do:
         p:=ithprime(n):x:=convert(p,base,10):
         x1:=x:n1:=nops(x):c:=0:
            for i from 1 to n0 do:
             ii:=0:
               for j from 1 to n1 while(ii=0)do:
                 if x0[i]=x[j]
                 then
                 c:=c+1:x[j]:=99:ii:=1:
                 else
                 fi:
               od:
             od:
              if c=n0
              then
              lst:=lst union {p}:n0:=n1:x0:=x1:
              else
              fi:
        od:
        print(lst):

A242905 a(n+1) is the smallest prime > a(n) such that the digits of a(n) are all (with multiplicity) contained in the digits of a(n+1), with a(1)=3.

Original entry on oeis.org

3, 13, 31, 103, 1013, 1031, 1103, 1301, 3011, 10103, 10301, 11003, 13001, 30011, 100103, 103001, 1000133, 1000313, 1001303, 1003103, 1010033, 1013003, 1030031, 1031003, 1033001, 1100303, 1300031, 1330001
Offset: 1

Views

Author

Michel Lagneau, May 26 2014

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory):lst:={3}:nn:=250000:x0:=convert(3,base,10):n0:=nops(x0):
      for n from 3 to nn do:
         p:=ithprime(n):x:=convert(p,base,10):
         x1:=x:n1:=nops(x):c:=0:
            for i from 1 to n0 do:
             ii:=0:
               for j from 1 to n1 while(ii=0)do:
                 if x0[i]=x[j]
                 then
                 c:=c+1:x[j]:=99:ii:=1:
                 else
                 fi:
               od:
             od:
              if c=n0
              then
              lst:=lst union {p}:n0:=n1:x0:=x1:
              else
              fi:
        od:
        print(lst):

A242907 a(n+1) is the smallest prime > a(n) such that the digits of a(n) are all (with multiplicity) contained in the digits of a(n+1), with a(1)=7.

Original entry on oeis.org

7, 17, 71, 107, 701, 1087, 8017, 10487, 10847, 14087, 18047, 48017, 70481, 70841, 78041, 78401, 80147, 80471, 81047, 84017, 84701, 87041, 100847, 104087, 184007, 400187, 400871, 401087, 407801, 408071, 408701, 410087, 410807, 418007, 470081, 478001, 480017
Offset: 1

Views

Author

Michel Lagneau, May 26 2014

Keywords

Crossrefs

Showing 1-3 of 3 results.