A242950 Number of ordered ways to write n = k + m with k > 1 and m > 1 such that the least nonnegative residue of prime(k) modulo k is a square and the least nonnegative residue of prime(m) modulo m is a prime.
0, 0, 0, 0, 1, 1, 0, 1, 3, 2, 1, 1, 3, 4, 4, 1, 3, 5, 4, 4, 4, 3, 3, 3, 3, 4, 4, 4, 3, 5, 2, 5, 3, 5, 3, 6, 3, 7, 4, 6, 5, 7, 5, 9, 7, 6, 4, 6, 5, 9, 5, 6, 8, 7, 8, 5, 8, 5, 8, 4, 8, 6, 7, 4, 7, 4, 6, 4, 5, 4, 8, 2, 3, 4, 5, 4, 5, 6, 7, 7
Offset: 1
Keywords
Examples
a(11) = 1 since 11 = 2 + 9, prime(2) = 3 == 1^2 (mod 2), and prime(9) = 23 == 5 (mod 9) with 5 prime. a(16) = 1 since 16 = 12 + 4, prime(12) = 37 == 1^2 (mod 12), and prime(4) = 7 == 3 (mod 4) with 3 prime.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
SQ[n_]:=IntegerQ[Sqrt[n]] s[k_]:=SQ[Mod[Prime[k],k]] p[k_]:=PrimeQ[Mod[Prime[k],k]] a[n_]:=Sum[Boole[s[k]&&p[n-k]],{k,2,n-2}] Table[a[n],{n,1,80}]
Comments