A242962 a(1) = a(2) = 0; for n >= 3: a(n) = (n*(n+1)/2) mod antisigma(n) = A000217(n) mod A024816(n).
0, 0, 0, 1, 6, 3, 8, 15, 13, 18, 12, 28, 14, 24, 24, 31, 18, 39, 20, 42, 32, 36, 24, 60, 31, 42, 40, 56, 30, 72, 32, 63, 48, 54, 48, 91, 38, 60, 56, 90, 42, 96, 44, 84, 78, 72, 48, 124, 57, 93, 72, 98, 54, 120, 72, 120, 80, 90, 60, 168, 62, 96, 104, 127, 84
Offset: 1
Keywords
Examples
a(6) = 3 because A000217(6) mod A024816(6) = 21 mod 9 = 3.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[((n*(n+1)div 2) mod (n*(n+1)div 2-SumOfDivisors(n))): n in [3..1000]]
-
Mathematica
Array[If[# < 3, 0, Mod[PolygonalNumber@ #, Total@ Complement[Range@ #, Divisors@ #]]] &, 65] (* Michael De Vlieger, Jan 28 2020 *)
Comments