cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A242966 Composite numbers whose anti-divisors are all primes.

Original entry on oeis.org

4, 8, 16, 64, 1024, 4096, 65536, 262144, 4194304, 1073741824, 1152921504606846976, 1267650600228229401496703205376, 85070591730234615865843651857942052864, 93536104789177786765035829293842113257979682750464
Offset: 1

Views

Author

Paolo P. Lava, May 28 2014

Keywords

Comments

It appears they are all powers of 2.
Subset of A242965.
a(n) must be 2^k. - Hiroaki Yamanouchi, Mar 17 2015
The exponents are 2, 3, 4, 6, 10, 12, 16, 18, 22, 30, 60, 100, 126, 166, 198, ... - Michel Marcus, Mar 18 2015

Examples

			The anti-divisors of 1024 are all primes: 3, 23, 89, 683.
The same for 65536: 3, 43691.
		

Crossrefs

Programs

  • Maple
    P := proc(q) local k,ok,n; for n from 3 to q do if not isprime(n)
    then ok:=1; for k from 2 to n-1 do if abs((n mod k)-k/2)<1
    then if not isprime(k) then ok:=0; break; fi; fi; od;
    if ok=1 then print(n); fi; fi; od; end: P(10^100);
  • Mathematica
    antiDivisors[n_] := Cases[Range[2, n - 1], ?(Abs[Mod[n, #] - #/2] < 1 &)]; Select[2^Range[2, 20], AllTrue[antiDivisors@ #, PrimeQ] &] (* _Michael De Vlieger, Mar 18 2015 *)
  • Python
    from sympy import isprime, divisors
    A242966 = [n for n in range(3,10**5) if not isprime(n) and list(filter(lambda x: not isprime(x), [2*d for d in divisors(n) if n > 2*d and n % (2*d)] + [d for d in divisors(2*n-1) if n > d >=2 and n % d] + [d for d in divisors(2*n+1) if n > d >=2 and n % d])) == []]
    # Chai Wah Wu, Aug 13 2014

Extensions

a(11)-a(14) from Hiroaki Yamanouchi, Mar 17 2015

A241556 Number of prime anti-divisors m of n.

Original entry on oeis.org

0, 0, 1, 1, 2, 0, 3, 2, 1, 2, 3, 1, 3, 1, 1, 2, 5, 2, 3, 2, 1, 2, 3, 1, 4, 2, 3, 4, 3, 0, 3, 4, 3, 2, 3, 0, 3, 4, 3, 1, 2, 2, 5, 2, 3, 4, 5, 2, 3, 2, 1, 3, 4, 0, 3, 2, 3, 4, 5, 3, 4, 3, 2, 2, 3, 2, 5, 2, 1, 2, 5, 4, 5, 2, 1, 2, 5, 2, 3, 4, 3, 3, 4, 1, 4, 2, 3, 4, 3, 0, 3, 4, 5, 4, 3, 0
Offset: 1

Views

Author

Michael De Vlieger, Aug 08 2014

Keywords

Comments

The maximum value of a(n) is 9 for 1 <= n <= 10000.
There are 167 instances of a(n) = 0 for 1 <= n <= 10000 (See A241557).

Examples

			a(10) = 2, since 10 has 3 anti-divisors {3, 4, 7}; only {3, 7} are prime.
a(9223) = 9; these are {2, 3, 5, 7, 11, 13, 17, 31, 43}.
		

Crossrefs

Programs

  • Mathematica
    primeAntiDivisors[n_] := Select[Cases[Range[2, n - 1], _?(Abs[Mod[n, #] - #/2] < 1 &)], PrimeQ]; a241556[n_Integer] := Map[Length[primeAntiDivisors[#]] &, Range[n]]; a241556[120]
Showing 1-2 of 2 results.