cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A245725 Decimal expansion of z_tri, a constant related to the enumeration of spanning trees on the triangular lattice (this is different from A242968).

Original entry on oeis.org

1, 6, 1, 5, 3, 2, 9, 7, 3, 6, 0, 9, 7, 2, 5, 2, 5, 7, 0, 4, 6, 8, 1, 8, 2, 5, 5, 3, 6, 1, 9, 0, 3, 1, 9, 7, 0, 3, 6, 1, 2, 0, 9, 2, 0, 3, 9, 0, 2, 9, 3, 5, 0, 8, 0, 6, 5, 4, 3, 4, 2, 3, 5, 1, 8, 0, 5, 0, 7, 5, 5, 6, 4, 0, 3, 6, 3, 4, 9, 2, 1, 0, 4, 1, 8, 9, 3, 8, 0, 4, 5, 4, 4, 6, 8, 5, 6, 9, 6, 0, 3, 6, 7, 4
Offset: 1

Views

Author

Jean-François Alcover, Jul 30 2014

Keywords

Examples

			1.6153297360972525704681825536190319703612092039029350806543423518...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.22 Lenz-Ising Constants, p. 400.

Crossrefs

Programs

  • Mathematica
    H = Sqrt[3]/(6*Pi)*PolyGamma[1, 1/6] - Pi/Sqrt[3] - Log[6]; RealDigits[Log[2] + Log[3] + H, 10, 104] // First
    (* or *) 3*(Sqrt[3]/Pi)*N[Sum[1/n^2 - 1/(n+4)^2, {n, 1, Infinity, 6}], 104] // RealDigits // First

Formula

Equals log(2) + log(3) + H, where H is the auxiliary constant A242967.
Equals Sum_{n>=1} 10*n*(arccoth((3*n) / 2) - 2 * arccoth(3*n)). - Antonio Graciá Llorente, Oct 13 2024

A245737 Decimal expansion of z_hc, the bulk limit of the number of spanning trees on a honeycomb lattice.

Original entry on oeis.org

8, 0, 7, 6, 6, 4, 8, 6, 8, 0, 4, 8, 6, 2, 6, 2, 8, 5, 2, 3, 4, 0, 9, 1, 2, 7, 6, 8, 0, 9, 5, 1, 5, 9, 8, 5, 1, 8, 0, 6, 0, 4, 6, 0, 1, 9, 5, 1, 4, 6, 7, 5, 4, 0, 3, 2, 7, 1, 7, 1, 1, 7, 5, 9, 0, 2, 5, 3, 7, 7, 8, 2, 0, 1, 8, 1, 7, 4, 6, 0, 5, 2, 0, 9, 4, 6, 9, 0, 2, 2, 7, 2, 3, 4, 2, 8, 4, 8, 0, 1, 8, 3, 7
Offset: 0

Views

Author

Jean-François Alcover, Jul 31 2014

Keywords

Examples

			0.8076648680486262852340912768095159851806046019514675403271711759...
		

Crossrefs

Cf. A218387(z_sq), A242967(H), A245725(z_tri).

Programs

  • Mathematica
    H = Sqrt[3]/(6*Pi)*PolyGamma[1, 1/6] - Pi/Sqrt[3] - Log[6]; RealDigits[(1/2)*(Log[2] + Log[3] + H), 10, 103] // First

Formula

(1/2)*(log(2) + log(3) + H), where H is the auxiliary constant A242967.

A242968 Decimal expansion of an Ising constant related to the triangular lattice.

Original entry on oeis.org

8, 7, 9, 5, 8, 5, 3, 8, 6, 1, 6, 1, 5, 7, 1, 5, 1, 7, 0, 9, 3, 8, 9, 6, 0, 2, 8, 3, 0, 7, 9, 7, 2, 8, 4, 3, 0, 5, 6, 4, 8, 2, 0, 2, 9, 6, 7, 5, 9, 0, 7, 8, 0, 4, 4, 5, 3, 8, 3, 7, 5, 9, 7, 2, 3, 9, 8, 6, 1, 0, 1, 9, 6, 9, 8, 3, 6, 9, 7, 2, 1, 2, 9, 3, 9, 9, 6, 7, 4, 7, 5, 1, 8, 2, 0, 4, 8, 0, 1, 7, 5, 7, 7
Offset: 0

Views

Author

Jean-François Alcover, May 28 2014

Keywords

Examples

			0.879585386161571517093896028307972843...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.22 Lenz-Ising constants, p. 399.

Crossrefs

Programs

  • Mathematica
    H = Sqrt[3]/(6*Pi)*PolyGamma[1, 1/6]  -  Pi/Sqrt[3] - Log[6]; Log[2] + Log[3]/4 + H/2 // RealDigits[#, 10, 103] & // First

Formula

log(2) + log(3)/4 + H/2, where H is defined in A242967.

A242969 Decimal expansion of an Ising constant related to the hexagonal lattice.

Original entry on oeis.org

1, 0, 2, 5, 0, 5, 9, 0, 9, 6, 4, 7, 1, 3, 1, 3, 2, 2, 0, 1, 7, 4, 4, 7, 3, 0, 0, 8, 3, 6, 4, 4, 7, 7, 7, 0, 2, 7, 8, 9, 9, 2, 5, 0, 0, 7, 6, 1, 1, 5, 4, 8, 7, 6, 0, 1, 5, 7, 5, 9, 9, 1, 7, 6, 1, 0, 7, 3, 3, 9, 2, 7, 5, 2, 9, 8, 5, 8, 6, 9, 0, 2, 1, 2, 6, 0, 7, 0, 1, 1, 3, 5, 6, 3, 3, 5, 6, 6, 0, 6
Offset: 1

Views

Author

Jean-François Alcover, May 28 2014

Keywords

Examples

			1.0250590964713132201744730083644777...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.22 Lenz-Ising constants, p. 399.

Crossrefs

Programs

  • Mathematica
    H = Sqrt[3]/(6*Pi)*PolyGamma[1, 1/6] - Pi/Sqrt[3] - Log[6]; 3/4*Log[2] + Log[3]/2 + H/4 // RealDigits[#, 10, 100]& // First

Formula

3/4*log(2) + log(3)/2 + H/4, where H is defined in A242967.

A245739 Decimal expansion of z_kag, the bulk limit of the number of spanning trees on a kagomé lattice.

Original entry on oeis.org

1, 1, 3, 5, 6, 9, 6, 4, 0, 1, 7, 7, 5, 1, 0, 2, 5, 2, 3, 7, 6, 0, 2, 1, 9, 9, 7, 0, 6, 6, 6, 5, 7, 8, 0, 8, 1, 0, 2, 8, 0, 6, 6, 6, 3, 2, 0, 2, 8, 6, 4, 6, 5, 9, 5, 5, 0, 3, 2, 3, 8, 8, 9, 8, 3, 1, 1, 9, 8, 7, 8, 2, 6, 4, 0, 8, 2, 1, 7, 6, 3, 0, 9, 6, 6, 1, 3, 9, 0, 4, 2, 4, 1, 9, 0, 0, 2, 5, 7, 8, 8, 9, 9
Offset: 1

Views

Author

Jean-François Alcover, Jul 31 2014

Keywords

Examples

			1.1356964017751025237602199706665780810280666320286465955...
		

Crossrefs

Cf. A218387(z_sq), A242967(H), A245725(z_tri), A245736(z_br), A245737(z_hc).

Programs

  • Mathematica
    H = Sqrt[3]/(6*Pi)*PolyGamma[1, 1/6] - Pi/Sqrt[3] - Log[6]; RealDigits[(1/3)*(2*Log[2] + 2*Log[3] + H), 10, 103] // First

Formula

(1/3)*(2*log(2) + 2*log(3) + H), where H is the auxiliary constant A242967.
Equals (1/3)*(A245725 + log(6)).

A245740 Decimal expansion of z_(3-12-12), the bulk limit of the number of spanning trees on a 3-12-12 lattice.

Original entry on oeis.org

7, 2, 0, 5, 6, 3, 3, 2, 2, 8, 6, 6, 5, 7, 7, 1, 0, 6, 0, 7, 7, 3, 6, 4, 5, 2, 0, 6, 2, 7, 9, 5, 7, 5, 5, 2, 4, 2, 2, 3, 8, 3, 5, 1, 9, 3, 3, 2, 3, 6, 7, 0, 4, 2, 3, 8, 3, 6, 1, 4, 0, 9, 6, 1, 5, 2, 7, 9, 1, 4, 7, 4, 1, 6, 0, 4, 3, 5, 9, 9, 0, 3, 2, 0, 4, 4, 7, 9, 4, 6, 3, 9, 2, 2, 9, 4, 7, 7, 6, 6, 5, 9, 2
Offset: 0

Views

Author

Jean-François Alcover, Jul 31 2014

Keywords

Examples

			0.720563322866577106077364520627957552422383519332367042383614...
		

Crossrefs

Cf. A218387(z_sq), A242967(H), A245725(z_tri), A245736(z_br), A245737(z_hc), A245739(z_kag).

Programs

  • Mathematica
    H = Sqrt[3]/(6*Pi)*PolyGamma[1, 1/6] - Pi/Sqrt[3] - Log[6]; RealDigits[(1/6)*(Log[2] + 2*Log[3] + Log[5] + H), 10, 103] // First

Formula

(1/6)*(log(2) + 2*log(3) + log(5) + H), where H is the auxiliary constant A242967.
Equals (1/6)*(A245725 + log(15)).
Showing 1-6 of 6 results.