cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242986 a(n) = 6*(n+1)!/((3+floor(n/2))*(floor(n/2)!)^2).

Original entry on oeis.org

2, 4, 9, 36, 36, 216, 140, 1120, 540, 5400, 2079, 24948, 8008, 112112, 30888, 494208, 119340, 2148120, 461890, 9237800, 1790712, 39395664, 6953544, 166885056, 27041560, 703080560, 105306075, 2948570100, 410605200, 12318156000, 1602881040, 51292193280, 6263890380
Offset: 0

Views

Author

Peter Luschny, Aug 25 2014

Keywords

Crossrefs

Programs

  • Magma
    [6*Factorial(n+1)/((3+Floor(n/2))*(Factorial(Floor(n/2)))^2) : n in [0..30]]; // Wesley Ivan Hurt, Aug 26 2014
  • Maple
    A056040 := n -> n!/iquo(n,2)!^2;
    A242986 := n -> (6*(n+1)/(3+iquo(n,2)))*A056040(n);
    seq(A242986(n), n=0..32);
  • Mathematica
    Table[6(n + 1)!/((3 + Floor[n/2])*(Floor[n/2]!)^2), {n, 0, 30}] (* Wesley Ivan Hurt, Aug 26 2014 *)
  • Sage
    @CachedFunction
    def A242986(n):
        if n == 0: return 2
        h = (n+1)*A242986(n-1)
        if 2.divides(n):
            h *= (4*(n+4))/(n^2*(n+6))
        return h
    [A242986(n) for n in range(33)]
    

Formula

a(n) = (6*(n+1)/(3+floor(n/2)))*A056040(n).
a(2*n) = A007946(n).
Recurrence: a(n) = a(n-1)*(n+1)*(4*(n+4))/(n^2*(n+6)) if n mod 2 = 0 else a(n-1)*(n+1) for n>0, a(0) = 2.
Asymptotic: a(x) ~ exp(x*log(2) - log(Pi)/2 - cos(Pi*x)*(log(x/2) + 1/(2*x))/2 + log(6*(x+1)) - log(3+floor(x/2))) for x>=1.
G.f.: (4*x-1)/(2*x^6) + (-16*x^7+16*x^6-48*x^5+12*x^4+48*x^3-12*x^2-8*x+2)/(4*(1-4*x^2)^(3/2)*x^6). - Robert Israel, Aug 25 2014
Sum_{n>=0} 1/a(n) = Pi^2/54 + 19*Pi/(54*sqrt(3)) + 1/9. - Amiram Eldar, Feb 17 2023