A242999 Mersenne prime exponents p in A000043 such that R=2^k-1+(2^k-2)/(2^(p-k)-1) is prime for some k < p, listed with multiplicity (number of k's), see A243003 for the k-values.
3, 5, 7, 7, 13, 17, 19, 19, 31, 31, 61, 89
Offset: 1
Examples
For given p = A000043(n), the following k's yield a prime R: p : k's 2 : - 3 : 2 5 : 4 7 : 4, 5 13 : 11 17 : 13 19 : 16, 17 31 : 16, 29 61 : 57 89 : 78 107 through 86243 : none. 107 through 3021377: none. - _Robert Price_, Sep 04 2019 Thus the pairs (p,k) are (3,2), (5,4), (7,4), (7,5), (13,11), ... and the present sequence lists the first component of these pairs, sequence A243003 lists the second component.
Links
- S. Kravitz, A search for large weird numbers. J. Recreational Math. 9(1976), 82-85 (1977). Zbl 0365.10003
Programs
-
Mathematica
A000043 = {2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657, 37156667, 42643801, 43112609}; lst = {}; For[i = 1, i <= 10, i++, p = A000043[[i]]; For[k = 1, k < p, k++, r = 2^k - 1 + (2^k - 2)/(2^(p - k) - 1); If[! IntegerQ[r], Continue[]]; If[PrimeQ[r], AppendTo[lst, p]]]]; lst (* Robert Price, Sep 04 2019 *)
-
PARI
forprime(p=1,,ispseudoprime(2^p-1)||next;for(k=p\2+1,p-1,(k-1)%(p-k)==0 && isprime(2^k-1+(2^k-2)/(2^(p-k)-1))&&print1(p","))) \\ M. F. Hasler, Jul 19 2016
Comments