A243003 Pairs (p,k) such that p is in A000043 and R=2^k-1+(2^k-2)/(2^(p-k)-1) is prime: this sequence lists the k-values, see A242999 for the p-values. (Ordered by p, then k.)
2, 4, 4, 5, 11, 13, 16, 17, 16, 29, 57, 78
Offset: 1
Examples
For given p=A000043(n), the following k's yield a prime R: p : k's 2 : - 3 : 2 5 : 4 7 : 4, 5 13 : 11 17 : 13 19 : 16, 17 31 : 16, 29 61 : 57 89 : 78 107 through 86243 : none. 107 through 3021377: none. - _Robert Price_, Sep 04 2019 Thus the pairs (p,k) are (3,2), (5,4), (7,4), (7,5), (13,11), ... and the present sequence lists the second component of these pairs, the first components are listed in A242999.
Links
- S. Kravitz, A search for large weird numbers. J. Recreational Math. 9(1976), 82-85 (1977). Zbl 0365.10003
Crossrefs
Programs
-
Mathematica
A000043 = {2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657, 37156667, 42643801, 43112609}; lst = {}; For[i = 1, i <= 10, i++, p = A000043[[i]]; For[k = 1, k < p, k++, r = 2^k - 1 + (2^k - 2)/(2^(p - k) - 1); If[! IntegerQ[r], Continue[]]; If[PrimeQ[r], AppendTo[lst, k]]]]; lst (* Robert Price, Sep 04 2019 *)
-
PARI
forprime(p=1,, ispseudoprime(2^p-1)||next; for(k=p\2+1, p-1, (k-1)%(p-k)==0 && isprime(2^k-1+(2^k-2)/(2^(p-k)-1))&&print1(k", "))) \\ M. F. Hasler, Jul 19 2016
Formula
One must have p/2 < k < p and (p-k) | (k-1).
Comments