A243008 Triangular numbers divisible by the square of the sum of their digits.
1, 10, 3240, 3321, 13041, 13203, 15400, 65341, 80200, 90100, 161028, 210276, 260281, 265356, 266085, 300700, 346528, 500500, 937765, 947376, 1043290, 1228528, 1313010, 1628110, 2049300, 2390391, 2421100, 3357936, 3746953, 4020030, 5250420, 6641190, 6857956, 6939675
Offset: 1
Examples
a(3) = 3240 = 80 * (80 + 1)/2 is a triangular number. Since 3240 is divisible by (3 + 2 + 4 + 0)^2 = 81, it appears in the sequence. a(3) = 3321 = 81 * (81 + 1)/2 is a triangular number. Since 3321 is divisible by (3 + 3 + 2 + 1)^2 = 81, it appears in the sequence.
Links
- K. D. Bajpai, Table of n, a(n) for n = 1..12445
Programs
-
Mathematica
Select[Table[n*(n + 1)/2, {n, 10000}], Divisible[#, Plus @@ IntegerDigits[#]^2] &]
-
PARI
for(n=1,10^4,s=n*(n+1)/2;if(s%(sumdigits(s)^2)==0,print1(s,", "))) \\ Derek Orr, Aug 23 2014
Comments