cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243051 Integer sequence induced by Bulgarian solitaire operation on partition list A241918: a(n) = A241909(A242424(A241909(n))).

Original entry on oeis.org

1, 2, 4, 3, 8, 25, 16, 9, 9, 343, 32, 10, 64, 14641, 125, 27, 128, 15, 256, 98, 2401, 371293, 512, 30, 27, 24137569, 6, 2662, 1024, 147, 2048, 81, 161051, 893871739, 625, 50, 4096, 78310985281, 4826809, 28, 8192, 3993, 16384, 57122, 50, 14507145975869, 32768, 90, 81
Offset: 1

Views

Author

Antti Karttunen, May 29 2014

Keywords

Comments

In "Bulgarian solitaire" a deck of cards or another finite set of objects is divided into one or more piles, and the "Bulgarian operation" is performed by taking one card from each pile, and making a new pile of them, which is added to the remaining set of piles. Essentially, this operation is a function whose domain and range are unordered integer partitions (cf. A000041) and which preserves the total size of a partition (the sum of its parts). This sequence is induced when the operation is implemented on the partitions as ordered by the list A241918.

Examples

			For n = 10, we see that as 10 = 2*5 = p_1^1 * p_2^0 * p_3^1, it encodes a partition [2,2,2]. Applying one step of Bulgarian solitaire (subtract one from each part, and add a new part as large as there were parts in the old partition) to this partition results a new partition [1,1,1,3], which is encoded in the prime factorization of p_1^0 * p_2^0 * p_3^0 * p_4^3 = 7^3 = 343. Thus a(10) = 343.
For n = 46, we see that as 46 = 2*23 = p_1 * p_9 = p_1^1 * p_2^0 * p_3^0 * ... * p_9^1, it encodes a partition [2,2,2,2,2,2,2,2,2]. Applying one step of Bulgarian solitaire to this partition results a new partition [1,1,1,1,1,1,1,1,1,9], which is encoded in the prime factorization of p_1^0 * p_2^0 * ... * p_9^0 * p_10^9 = 29^9 = 14507145975869. Thus a(46) = 14507145975869.
For n = 1875, we see that as 1875 = p_1^0 * p_2^1 * p_3^4, it encodes a partition [1,2,5]. Applying Bulgarian Solitaire, we get a new partition [1,3,4]. This in turn is encoded by p_1^0 * p_2^2 * p_3^2 = 3^2 * 5^2 = 225. Thus a(1875)=225.
		

References

  • Martin Gardner, Colossal Book of Mathematics, Chapter 34, Bulgarian Solitaire and Other Seemingly Endless Tasks, pp. 455-467, W. W. Norton & Company, 2001.

Crossrefs

Row 1 of A243060 (table which gives successive "recursive iterates" of this sequence and converges towards A122111).
Fixed points: A243054.

Formula

a(n) = A241909(A242424(A241909(n))).
a(n) = 1 + A075157(A226062(A075158(n-1))).
A243503(a(n)) = A243503(n) for all n. [Because Bulgarian operation doesn't change the total sum of the partition].