cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243053 Integer sequence induced by third-order Bulgarian solitaire operation on partition list A241918: a(n) = A241909(A243073(A241909(n))).

Original entry on oeis.org

1, 2, 4, 3, 8, 6, 16, 5, 9, 12, 32, 10, 64, 24, 18, 7, 128, 15, 256, 20, 36, 48, 512, 55, 27, 96, 25, 40, 1024, 30, 2048, 49, 72, 192, 54, 21, 4096, 384, 144, 637, 8192, 60, 16384, 80, 50, 768, 32768, 22, 81, 45, 288, 160, 65536, 35, 108, 22627, 576, 1536, 131072
Offset: 1

Views

Author

Antti Karttunen, May 29 2014

Keywords

Comments

The usual (first-order) Bulgarian Solitaire operation (cf. A243051) applied to an unordered integer partition means: subtract one from each part, and add a new part as large as there were parts in the old partition.
The "Second-Order Bulgarian Operation" means that after subtracting one from each part of the old partition (and discarding the parts that diminished to zero), we apply the (first-order) Bulgarian operation to the remaining partition before adding a new part as large as there were parts in the original partition.
Similarly, in "Third-Order Bulgarian Solitaire Operation", we apply the Second-Order Bulgarian operation to the remaining partition (after we have subtracted one from each part) before adding a new part as large as there were parts in the original partition.
How the partitions are encoded in this case, see A241918.

Crossrefs

Third row of A243060.
Differs from A122111 for the first time at n=24, where a(24) = 55, while A122111(24) = 14.

Programs

  • Scheme
    (define (A243053 n) (explist->n (ascpart_to_prime-exps (bulgarian-operation-n-th-order (prime-exps_to_ascpart (primefacs->explist n)) 3))))
    (define (bulgarian-operation-n-th-order ascpart n) (if (or (zero? n) (null? ascpart)) ascpart (let ((newpart (length ascpart))) (let loop ((newpartition (list)) (ascpart ascpart)) (cond ((null? ascpart) (sort (cons newpart (bulgarian-operation-n-th-order newpartition (- n 1))) <)) (else (loop (if (= 1 (car ascpart)) newpartition (cons (- (car ascpart) 1) newpartition)) (cdr ascpart))))))))
    ;; Other required functions and libraries, please see A243051.

Formula

a(n) = A241909(A243073(A241909(n))).