cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243057 If n = p_a * p_b * ... * p_h * p_i * p_j * p_k, with p_a <= p_b <= ... <= p_k, then a(n) = p_{k-j} * p_{k-i} * p_{k-h} * ... * p_{k-a} * p_k, where p_{0} = 1 and for k>=1, p_{k} = A000040(k).

Original entry on oeis.org

1, 2, 3, 2, 5, 6, 7, 2, 3, 15, 11, 12, 13, 35, 10, 2, 17, 6, 19, 45, 21, 77, 23, 24, 5, 143, 3, 175, 29, 30, 31, 2, 55, 221, 14, 12, 37, 323, 91, 135, 41, 105, 43, 539, 20, 437, 47, 48, 7, 15, 187, 1573, 53, 6, 33, 875, 247, 667, 59, 90, 61, 899, 63, 2, 65, 385
Offset: 1

Views

Author

Antti Karttunen, May 31 2014

Keywords

Comments

A243058 gives all n such that a(n) = n (the fixed points of this sequence, which include primes).
A102750 gives such n that a(a(n)) = n. A243286 is the self-inverse permutation induced when the domain is restricted to A102750. Cf. also A242420.
A070003 gives all n such that a(a(n)) <> n. Another variant, A243059, is defined to be zero when n is one of the terms of A070003.

Examples

			For n = 9 = 3*3 = p_2 * p_2, we have a(n) = p_{3-3} * p_3 = 1*3 = 3. [Like all terms in A070003 this is an example of "degenerate case", where some p's in the product get index 0, and thus are set to 1 by convention used here.]
For n = 10 = 2*5 = p_1 * p_3, we have a(n) = p_{3-1} * p_3 = 3*5 = 15.
For n = 12 = 2*2*3 = p_1 * p_1 * p_2, we have a(n) = p_{2-1} * p{2-1} * p_2 = p_1^2 * p_2 = 12.
For n = 15 = 3*5 = p_2 * p_3, we have a(n) = p_{3-2} * p_3 = 2*5 = 10.
For n = 2200 = 2*2*2*5*5*11 = p_1 * p_1 * p_1 * p_3 * p_3 * p_5, we have a(n) = p_{5-3} * p_{5-3} * p_{5-1} * p_{5-1} * p_{5-1} * p_5 = 3*3*7*7*7*11 = 33957.
For n = 33957 = 3*3*7*7*7*11 = p_2 * p_2 * p_4 * p_4 * p_4 * p_5, we have a(n) = p_{5-4} * p_{5-4} * p_{5-4} * p_{5-2} * p_{5-2} * p_5 = 2*2*2*5*5*11 = 2200.
		

Crossrefs

Fixed points: A243058 (includes primes).

Formula

If n = p_a * p_b * ... * p_h * p_i * p_j * p_k, where p_a <= p_b <= ... <= p_k are (not necessarily distinct) primes (sorted into nondescending order) in the prime factorization of n, then a(n) = p_{k-j} * p_{k-i} * p_{k-h} * ... * p_{k-a} * p_k, where p_{0} = 1 and for k>=1, p_{k} = A000040(k).
a(1)=1, and for n>1, a(n) = p_{A243056(n)} * a(A032742(n)). Here p_{k} stands for 1 when k=0, and otherwise for the k-th prime, A000040(k).
For all n, a(n) = a(A243074(n)).
For all k in A102750, a(k) = A242420(k).