A243063 Numbers generated by a Fibonacci-like sequence in which zeros are suppressed.
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 61, 438, 499, 937, 1436, 2373, 389, 2762, 3151, 5913, 964, 6877, 7841, 14718, 22559, 37277, 59836, 97113, 156949, 25462, 182411, 27873, 21284, 49157, 7441, 56598, 6439, 6337, 12776, 19113, 31889, 512, 3241
Offset: 1
Examples
x(3) = x(1) + x(2) = 1 + 1 = 2. x(4) = x(2) + x(3) = 1 + 2 = 3. x(15) = no-zero(x(13) + x(14)) = no-zero(233 + 377) = no-zero(610) = 61. x(16) = 377 + 61 = 438.
Links
- Anthony Sand, Table of n, a(n) for n = 1..927
- Index entries for linear recurrences with constant coefficients, order 912.
Programs
-
Maple
noz:=proc(n) local a,t1,i,j; a:=0; t1:=convert(n,base,10); for i from 1 to nops(t1) do j:=t1[nops(t1)+1-i]; if j <> 0 then a := 10*a+j; fi; od: a; end; # A004719 t1:=[1,1]; for n from 3 to 100 do t1:=[op(t1),noz(t1[n-1]+t1[n-2])]; od: t1; # N. J. A. Sloane, Jun 11 2014
-
Mathematica
Nest[Append[#, FromDigits@ DeleteCases[IntegerDigits[Total@ #[[-2 ;; -1]] ], ?(# == 0 &)]] &, {1, 1}, 45] (* _Michael De Vlieger, Jun 27 2020 *) nxt[{a_,b_}]:={b,FromDigits[DeleteCases[IntegerDigits[a+b],0]]}; NestList[nxt,{1,1},50][[All,1]] (* Harvey P. Dale, Sep 12 2022 *)
Formula
x(i) = no-zero(x(i-2) + x(i-1)). For example, no-zero(233 + 377) = no-zero(610) = 61.
Comments