cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243067 Integers from 0 to A000120(n)-1 followed by integers from 0 to A000120(n+1)-1 and so on, starting with n=1.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 2, 0, 0, 1, 0, 1, 0, 1, 2, 0, 1, 0, 1, 2, 0, 1, 2, 0, 1, 2, 3, 0, 0, 1, 0, 1, 0, 1, 2, 0, 1, 0, 1, 2, 0, 1, 2, 0, 1, 2, 3, 0, 1, 0, 1, 2, 0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 4, 0, 0, 1, 0, 1, 0, 1, 2, 0, 1, 0, 1, 2, 0, 1, 2, 0, 1, 2, 3, 0, 1, 0, 1, 2, 0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 0, 1, 2, 3, 0
Offset: 1

Views

Author

Antti Karttunen, Jun 19 2014

Keywords

Examples

			For n=1, also 1 in binary notation, so the count of its 1-bits is 1 (A000120(1)=1), we list numbers from 0 to 0, thus just 0.
For n=2, 10 in binary, thus A000120(2)=1, we list numbers from 0 to 0, thus just 0.
For n=3, 11 in binary, thus A000120(3)=2, we list numbers from 0 to 1, and so we have the first four terms of the sequence: 0; 0; 0, 1;
		

Crossrefs

Programs

Formula

a(n) = n - (1 + A000788(A100922(n-1)-1)).