cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A242994 Numbers n such that n!3 - 3 is prime, where n!3 = n!!! is a triple factorial number (A007661).

Original entry on oeis.org

5, 10, 11, 13, 16, 22, 28, 71, 74, 94, 119, 121, 134, 157, 200, 262, 286, 484, 1039, 1045, 1190, 1595, 1679, 1772, 1789, 2410, 2920, 5039, 7919, 10462, 11846, 23293, 26705, 30781, 43694
Offset: 1

Views

Author

Robert Price, Aug 17 2014

Keywords

Comments

Large terms correspond to probable primes. - Jens Kruse Andersen, Aug 19 2014
a(36) > 50000. - Robert Price, Oct 12 2014

Examples

			11!3-3 = 11*8*5*2-3 = 877 is prime, so 11 is in the sequence. - _Jens Kruse Andersen_, Aug 19 2014
		

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, If[n < k + 1, n, n*MultiFactorial[n - k, k]]];
    lst={};Do[If[PrimeQ[MultiFactorial[n, 3] - 3], AppendTo[lst, n]], {n, 100}];lst

Extensions

Links and crossrefs fixed by Jens Kruse Andersen, Aug 19 2014
a(35) from Robert Price, Oct 12 2014

A247463 Numbers n such that n!3 - 3^3 is prime, where n!3 = n!!! is a triple factorial number (A007661).

Original entry on oeis.org

8, 11, 13, 22, 29, 49, 56, 61, 103, 142, 149, 257, 319, 365, 680, 736, 737, 749, 947, 974, 1040, 4277, 4678, 9961, 10652, 15545, 18064, 31325, 34918, 41032
Offset: 1

Views

Author

Robert Price, Sep 17 2014

Keywords

Comments

Large terms correspond to probable primes.
a(31) > 50000.

Examples

			11!3-27 = 11*8*5*2-27 = 853 is prime, so 11 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, If[n < k + 1, n, n*MultiFactorial[n - k, k]]];
    lst={};Do[If[PrimeQ[MultiFactorial[n, 3] - 27], AppendTo[lst, n]], {n, 100}];lst
    Select[Range[6,1100],PrimeQ[Times@@Range[#,1,-3]-27]&] (* Harvey P. Dale, Mar 16 2023 *)

A247464 Numbers n such that n!!! - 3^4 is prime.

Original entry on oeis.org

10, 13, 14, 17, 20, 26, 29, 31, 32, 50, 59, 77, 82, 104, 164, 185, 217, 263, 293, 361, 437, 442, 545, 547, 599, 608, 623, 739, 782, 1081, 1120, 1138, 1429, 2516, 2518, 4277, 4529, 5438, 5596, 11945, 12716, 13955, 14540, 31730, 31769, 42964, 46396
Offset: 1

Views

Author

Robert Price, Sep 17 2014

Keywords

Comments

Large terms correspond to probable primes.
a(48) > 50000.

Examples

			10!3-81 = 10*7*4*1-81 = 199 is prime, so 10 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, If[n < k + 1, n, n*MultiFactorial[n - k, k]]];
    lst={};Do[If[PrimeQ[MultiFactorial[n, 3] - 81], AppendTo[lst, n]], {n, 100}];lst

A247465 Numbers n such that n!3 - 3^5 is prime.

Original entry on oeis.org

10, 19, 28, 50, 67, 77, 89, 112, 139, 146, 184, 194, 233, 310, 311, 388, 886, 1139, 1648, 1694, 2405, 2554, 3709, 4015, 5410, 5908, 6407, 8065, 9061, 9875, 11722, 13471, 26026, 26656, 29441, 32741
Offset: 1

Views

Author

Robert Price, Sep 17 2014

Keywords

Comments

Large terms correspond to probable primes.
a(37) > 50000.

Examples

			10!3-243 = 10*7*4*1-243 = 37 is prime, so 10 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, If[n < k + 1, n, n*MultiFactorial[n - k, k]]];
    lst={};Do[If[PrimeQ[MultiFactorial[n, 3] - 243], AppendTo[lst, n]], {n, 100}];lst

A247466 Numbers n such that n!3 - 3^6 is prime.

Original entry on oeis.org

11, 26, 37, 38, 40, 41, 62, 131, 211, 212, 251, 272, 284, 383, 427, 538, 590, 860, 1087, 1280, 1826, 1835, 1895, 2276, 2524, 2872, 3769, 3878, 4334, 5704, 14332, 23386, 42694
Offset: 1

Views

Author

Robert Price, Sep 17 2014

Keywords

Comments

Large terms correspond to probable primes.
a(34) > 50000.

Examples

			11!3-729 = 11*8*5*2-729= 151 is prime, so 11 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, If[n < k + 1, n, n*MultiFactorial[n - k, k]]];
    lst={};Do[If[PrimeQ[MultiFactorial[n, 3] - 729], AppendTo[lst, n]], {n, 100}];lst

A247467 Numbers n such that n!3 + 3^6 is prime.

Original entry on oeis.org

4, 5, 7, 8, 10, 11, 14, 17, 35, 41, 50, 59, 89, 136, 164, 205, 224, 283, 763, 1034, 1253, 1630, 1820, 3199, 3800, 5080, 6124, 17306, 17398, 20768, 34033, 43607
Offset: 1

Views

Author

Robert Price, Sep 17 2014

Keywords

Comments

Large terms correspond to probable primes.
a(33) > 50000.

Examples

			11!3+729 = 11*8*5*2+729 = 1609 is prime, so 11 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, If[n < k + 1, n, n*MultiFactorial[n - k, k]]];
    lst={};Do[If[PrimeQ[MultiFactorial[n, 3] + 729], AppendTo[lst, n]], {n, 100}];lst

A247865 Numbers n such that n!3 + 3^2 is prime.

Original entry on oeis.org

2, 4, 5, 7, 8, 14, 17, 19, 22, 23, 26, 34, 46, 59, 70, 86, 100, 101, 118, 148, 151, 160, 200, 281, 317, 343, 682, 842, 853, 871, 1244, 1988, 2170, 2389, 2728, 3049, 3661, 4678, 9169, 12767, 16072, 19808, 20710, 33142, 33442
Offset: 1

Views

Author

Robert Price, Sep 25 2014

Keywords

Comments

Large terms correspond to probable primes.
a(46) > 50000.

Examples

			8!3+9 = 8*5*2+9= 89 is prime, so 8 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, If[n < k + 1, n, n*MultiFactorial[n - k, k]]];
    lst={};Do[If[PrimeQ[MultiFactorial[n, 3] + 9], AppendTo[lst, n]], {n, 100}];lst

A247866 Numbers k such that k!3 + 3^4 is prime.

Original entry on oeis.org

2, 7, 14, 16, 22, 23, 26, 40, 43, 47, 58, 62, 70, 107, 265, 292, 439, 874, 982, 1063, 1150, 2506, 3578, 3775, 7679, 10024, 42625, 46714
Offset: 1

Views

Author

Robert Price, Sep 25 2014

Keywords

Comments

Large terms correspond to probable primes.
a(29) > 50000.

Examples

			7!3 + 81 = 7*4*1 + 81 = 109 is prime, so 7 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, If[n < k + 1, n, n*MultiFactorial[n - k, k]]];
    lst={};Do[If[PrimeQ[MultiFactorial[n, 3] + 81], AppendTo[lst, n]], {n, 100}];lst

A247868 Numbers n such that n!3 + 3^5 is prime, where n!3 = n!!! is a triple factorial number (A007661).

Original entry on oeis.org

7, 10, 11, 22, 23, 25, 44, 46, 47, 50, 53, 55, 89, 122, 214, 410, 427, 526, 539, 575, 1369, 1370, 2291, 4999, 5374, 7202, 7375, 7823, 8921, 9764, 22967, 25507, 44117
Offset: 1

Views

Author

Robert Price, Sep 25 2014

Keywords

Comments

Large terms correspond to probable primes.
a(34) > 50000.

Examples

			10!3+243 = 10*7*4*1+243= 523 is prime, so 10 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, If[n < k + 1, n, n*MultiFactorial[n - k, k]]];
    lst={};Do[If[PrimeQ[MultiFactorial[n, 3] + 243], AppendTo[lst, n]], {n, 100}];lst

A247886 Numbers n such that n!3 + 3^3 is prime.

Original entry on oeis.org

2, 4, 5, 8, 10, 11, 14, 20, 23, 32, 34, 46, 47, 62, 136, 179, 208, 209, 229, 311, 340, 406, 692, 1235, 1349, 2558, 2651, 2873, 3794, 7417, 8647, 8695, 10004, 13595, 18658, 21427, 23120, 43316
Offset: 1

Views

Author

Robert Price, Sep 25 2014

Keywords

Comments

Large terms correspond to probable primes.
a(39) > 50000.

Examples

			10!3+27 = 10*7*4*1+27= 307 is prime, so 10 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, If[n < k + 1, n, n*MultiFactorial[n - k, k]]];
    lst={};Do[If[PrimeQ[MultiFactorial[n, 3] + 27], AppendTo[lst, n]], {n, 100}];lst
Showing 1-10 of 14 results. Next