cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243081 Number A(n,k) of compositions of n into parts with multiplicity not larger than k; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 3, 0, 1, 1, 2, 3, 3, 0, 1, 1, 2, 4, 7, 5, 0, 1, 1, 2, 4, 7, 11, 11, 0, 1, 1, 2, 4, 8, 15, 21, 13, 0, 1, 1, 2, 4, 8, 15, 26, 34, 19, 0, 1, 1, 2, 4, 8, 16, 31, 52, 59, 27, 0, 1, 1, 2, 4, 8, 16, 31, 57, 93, 114, 57, 0, 1, 1, 2, 4, 8, 16, 32, 63, 114, 173, 178, 65, 0
Offset: 0

Views

Author

Alois P. Heinz, May 29 2014

Keywords

Comments

A(n,k) is the number of compositions of n avoiding the pattern {1}^(k+1).

Examples

			Square array A(n,k) begins:
  1,  1,  1,  1,   1,   1,   1,   1,   1, ...
  0,  1,  1,  1,   1,   1,   1,   1,   1, ...
  0,  1,  2,  2,   2,   2,   2,   2,   2, ...
  0,  3,  3,  4,   4,   4,   4,   4,   4, ...
  0,  3,  7,  7,   8,   8,   8,   8,   8, ...
  0,  5, 11, 15,  15,  16,  16,  16,  16, ...
  0, 11, 21, 26,  31,  31,  32,  32,  32, ...
  0, 13, 34, 52,  57,  63,  63,  64,  64, ...
  0, 19, 59, 93, 114, 120, 127, 127, 128, ...
		

Crossrefs

Main diagonal gives A011782.
A(2n,n) gives A232605.

Programs

  • Maple
    b:= proc(n, i, p, k) option remember; `if`(n=0, p!, `if`(i<1, 0,
          add(b(n-i*j, i-1, p+j, k)/j!, j=0..min(n/i, k))))
        end:
    A:= (n, k)-> `if`(k>=n, `if`(n=0, 1, 2^(n-1)), b(n$2, 0, k)):
    seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    b[n_, i_, p_, k_] := b[n, i, p, k] = If[n == 0, p!, If[i<1, 0,
         Sum[b[n-i*j, i-1, p+j, k]/j!, {j, 0, Min[n/i, k]}]]];
    A[n_, k_] := If[k >= n, If[n == 0, 1, 2^(n-1)], b[n, n, 0, k]];
    Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Feb 02 2015, after Alois P. Heinz *)

Formula

A(n,k) = Sum_{i=0..k} A242447(n,i).