A243081 Number A(n,k) of compositions of n into parts with multiplicity not larger than k; square array A(n,k), n>=0, k>=0, read by antidiagonals.
1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 3, 0, 1, 1, 2, 3, 3, 0, 1, 1, 2, 4, 7, 5, 0, 1, 1, 2, 4, 7, 11, 11, 0, 1, 1, 2, 4, 8, 15, 21, 13, 0, 1, 1, 2, 4, 8, 15, 26, 34, 19, 0, 1, 1, 2, 4, 8, 16, 31, 52, 59, 27, 0, 1, 1, 2, 4, 8, 16, 31, 57, 93, 114, 57, 0, 1, 1, 2, 4, 8, 16, 32, 63, 114, 173, 178, 65, 0
Offset: 0
Examples
Square array A(n,k) begins: 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 0, 1, 1, 1, 1, 1, 1, 1, 1, ... 0, 1, 2, 2, 2, 2, 2, 2, 2, ... 0, 3, 3, 4, 4, 4, 4, 4, 4, ... 0, 3, 7, 7, 8, 8, 8, 8, 8, ... 0, 5, 11, 15, 15, 16, 16, 16, 16, ... 0, 11, 21, 26, 31, 31, 32, 32, 32, ... 0, 13, 34, 52, 57, 63, 63, 64, 64, ... 0, 19, 59, 93, 114, 120, 127, 127, 128, ...
Links
- Alois P. Heinz, Rows n = 0..140, flattened
Crossrefs
Programs
-
Maple
b:= proc(n, i, p, k) option remember; `if`(n=0, p!, `if`(i<1, 0, add(b(n-i*j, i-1, p+j, k)/j!, j=0..min(n/i, k)))) end: A:= (n, k)-> `if`(k>=n, `if`(n=0, 1, 2^(n-1)), b(n$2, 0, k)): seq(seq(A(n, d-n), n=0..d), d=0..14);
-
Mathematica
b[n_, i_, p_, k_] := b[n, i, p, k] = If[n == 0, p!, If[i<1, 0, Sum[b[n-i*j, i-1, p+j, k]/j!, {j, 0, Min[n/i, k]}]]]; A[n_, k_] := If[k >= n, If[n == 0, 1, 2^(n-1)], b[n, n, 0, k]]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Feb 02 2015, after Alois P. Heinz *)
Formula
A(n,k) = Sum_{i=0..k} A242447(n,i).
Comments