A243091 Least number k > n such that n concatenated with k is a perfect square.
1, 6, 5, 6, 9, 29, 25, 29, 41, 61, 24, 56, 25, 69, 44, 21, 81, 64, 49, 36, 25, 316, 201, 104, 336, 281, 244, 225, 224, 241, 276, 36, 49, 64, 81, 344, 100, 249, 44, 69, 96, 209, 436, 56, 89, 369, 225, 61, 400, 284, 176, 84, 441, 361, 76, 225, 169, 76, 564, 536, 84, 504, 500, 504, 516, 536
Offset: 0
Examples
a(1) = 6 since 6>1 and 16 = 4^2. a(2) = 5 since 5>2 and 25 = 5^2.
Links
- Robert G. Wilson v, Table of n, a(n) for n = 0..1000
Crossrefs
Cf. A090566.
Programs
-
Mathematica
f[n_] := Block[{x = n, d = 1 + Floor@ Log10@ n}, q = (Floor@ Sqrt[(10^d + 1) x] + 1)^2; If[q < (10^d) (x + 1), Mod[q, 10^d], Mod[(Floor@ Sqrt[(10^d) (10 x + 1) - 1] + 1)^2, 10^(d + 1)]]]; Array[f, 65] (* Robert G. Wilson v, Nov 23 2015, after the algorithm of David W. Wilson in A090566 *) lnk[n_]:=Module[{k=n+1},While[!IntegerQ[Sqrt[n 10^IntegerLength[k]+k]],k++];k]; Array[lnk,70,0] (* Harvey P. Dale, Sep 01 2023 *)
-
PARI
a(n)=s=Str(n); k=n+1; while(!issquare(eval(concat(s,Str(k)))), k++); return(k) vector(100, n, a(n))
-
PARI
A048761 = t->(sqrtint(t-1)+1)^2 A243091(n)={my(d=#Str(n),a=A048761((1+10^d)*n)); a>=(n+1)*10^d && a=A048761((n*10+1)*10^d); a%10^(d+(a>=100^d))} \\ M. F. Hasler, Nov 24 2015
Extensions
a(0)=1 added by N. J. A. Sloane, Nov 24 2015
Comments