A243098 Number T(n,k) of endofunctions on [n] with all cycles of length k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
1, 0, 1, 0, 3, 1, 0, 16, 6, 2, 0, 125, 51, 24, 6, 0, 1296, 560, 300, 120, 24, 0, 16807, 7575, 4360, 2160, 720, 120, 0, 262144, 122052, 73710, 41160, 17640, 5040, 720, 0, 4782969, 2285353, 1430016, 861420, 430080, 161280, 40320, 5040
Offset: 0
Examples
Triangle T(n,k) begins: 1; 0, 1; 0, 3, 1; 0, 16, 6, 2; 0, 125, 51, 24, 6; 0, 1296, 560, 300, 120, 24; 0, 16807, 7575, 4360, 2160, 720, 120; 0, 262144, 122052, 73710, 41160, 17640, 5040, 720; ...
Links
- Alois P. Heinz, Rows n = 0..140, flattened
Crossrefs
Programs
-
Maple
with(combinat): T:= (n, k)-> `if`(k*n=0, `if`(k+n=0, 1, 0), add(binomial(n-1, j*k-1)*n^(n-j*k)*(k-1)!^j* multinomial(j*k, k$j, 0)/j!, j=0..n/k)): seq(seq(T(n, k), k=0..n), n=0..10);
-
Mathematica
multinomial[n_, k_] := n!/Times @@ (k!); T[n_, k_] := If[k*n==0, If[k+n == 0, 1, 0], Sum[Binomial[n-1, j*k-1]*n^(n-j*k)*(k-1)!^j*multinomial[j*k, Append[Array[k&, j], 0]]/j!, {j, 0, n/k}]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 19 2017, translated from Maple *)
Formula
E.g.f. of column k>0: exp((-LambertW(-x))^k/k), e.g.f. of column k=0: 1.
Comments