A243101 a(n) = (sum_{k=0}^{n-1}(4*k^3-1)*C(n-1,k)*C(n+k,k))/n^2, where C(m,k) denotes the binomial coefficient m!/(k!*(m-k)!).
-1, 2, 37, 324, 2403, 16582, 109961, 711176, 4521607, 28394442, 176648877, 1090974156, 6698429931, 40930511502, 249105886737, 1510954029072, 9138180665871, 55128765109906, 331851698655797, 1993747216968788
Offset: 1
Keywords
Examples
a(2) = 2 since (sum_{k=0,1}(4*k^3-1)*C(1,k)*C(2+k,k))/2^2 = (-1 + 3*3)/4 = 2.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..200
- Zhi-Wei Sun, Two new kinds of numbers and related divisibility results, arXiv:1408.5381, 2014.
Programs
-
Maple
A243101:=n->add((4*k^3-1)*binomial(n-1,k)*binomial(n+k,k), k=0..n-1)/n^2: seq(A243101(n), n=1..20); # Wesley Ivan Hurt, Sep 01 2014
-
Mathematica
a[n_]:=Sum[(4k^3-1)*Binomial[n-1,k]Binomial[n+k,k],{k,0,n-1}]/n^2 Table[a[n],{n,1,20}]
Formula
Recurrence (obtained via the Zeilberger algorithm):
n*(2*n+3)*(n^2+3*n+1)*a(n) - 2*(2*n^2+4*n+1)*(3*n^2+6*n+2)*a(n+1) + (n+2)*(2*n+1)*(n^2+n-1)*a(n+2) = 0.
a(n) ~ (3+2*sqrt(2))^n * sqrt(n) / (2^(5/4) * sqrt(Pi)). - Vaclav Kotesovec, Sep 02 2014
Comments