A243106 a(n) = Sum_{k=1..n} (-1)^isprime(k)*10^k.
10, -90, -1090, 8910, -91090, 908910, -9091090, 90908910, 1090908910, 11090908910, -88909091090, 911090908910, -9088909091090, 90911090908910, 1090911090908910, 11090911090908910, -88909088909091090, 911090911090908910, -9088909088909091090
Offset: 1
Examples
n=1 is not prime x^1 = (10)^1 = 10, therefore a(1)=10; n=2 is prime and x^2 = (10)^2 = 100, taking it negative, a(2) = 10 - 100 = -90; n=3 also is prime, x^3 = 1000, and we have a(3) = 10 - 100 - 1000 = -1090; n=4 is not prime, so a(4) = 10 - 100 - 1000 + 10000 = 8910; n=5 is prime, then a(5) = 10 - 100 - 1000 + 10000 - 100000 = -91090; Examples of analysis for the concatenation patterns among the terms can be found at the "Additional Information" link.
Links
- R. J. Cano, Table of n, a(n) for n = 1..100
- R. J. Cano, Additional information.
- Eric Weisstein's World of Mathematics, Alternating Series
- Eric Weisstein's World of Mathematics, Tutte Polynomial
Crossrefs
Programs
-
Mathematica
Table[Sum[ (-1)^Boole@ PrimeQ@ k*10^k, {k, n}], {n, 19}] (* Michael De Vlieger, Jan 03 2016 *)
-
PARI
ap(n, x)={my(s); forprime(p=1, n, s+=x^p); s} a=(n, x=10)->(x^(n+1)-1)/(x-1)-2*ap(n, x)-1;
-
PARI
Delta=(i, j)->(i==j); /* Kronecker's Delta function */ t=n->matrix(n, n, i, j, Delta(i, j)*((-1)^isprime(i))); /* coeffs t[i, j] */ /* Tutte polynomial over n */ T(n, x, y)={my(t0=t(n)); sum(i=1, n, sum(j=1, n, t0[i, j]*(x^i)*(y^j)))}; a=(n, x=10)->T(n, x, 1);
-
PARI
A243106(n,b=10)=sum(k=1,n,(-1)^isprime(k)*b^k) \\ M. F. Hasler, Aug 20 2014
Formula
a(n,x) = Sum_{k=1..n} (-1)^isprime(k)*(x^k), for x=10 in decimal.
Extensions
Definition simplified by N. J. A. Sloane, Aug 19 2014
Definition further simplified and more terms from M. F. Hasler, Aug 20 2014
Comments