cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A076227 Number of surviving Collatz residues mod 2^n.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 8, 13, 19, 38, 64, 128, 226, 367, 734, 1295, 2114, 4228, 7495, 14990, 27328, 46611, 93222, 168807, 286581, 573162, 1037374, 1762293, 3524586, 6385637, 12771274, 23642078, 41347483, 82694966, 151917636, 263841377, 527682754, 967378591, 1934757182, 3611535862
Offset: 0

Views

Author

Labos Elemer, Oct 01 2002

Keywords

Comments

Number of residue classes in which A074473(m) is not constant.
The ratio of numbers of inhomogenous r-classes versus uniform-classes enumerated here increases with n and tends to 0. For n large enough ratio < a(16)/65536 = 2114/65536 ~ 3.23%.
Theorem: a(n) can be generated for each n > 2 algorithmically in a Pascal's triangle-like manner from the two starting values 0 and 1. This result is based on the fact that the Collatz residues (mod 2^k) can be evolved according to a binary tree. There is a direct connectedness to A100982, A056576, A022921, A020915. - Mike Winkler, Sep 12 2017
Brown's criterion ensures that the sequence is complete (see formulae). - Vladimir M. Zarubin, Aug 11 2019

Examples

			n=6: Modulo 64, eight residue classes were counted: r=7, 15, 27, 31, 39, 47, 59, 63. See A075476-A075483. For other 64-8=56 r-classes u(q)=A074473(64k+q) is constant: in 32 class u(q)=2, in 16 classes u(q)=4, in 4 classes u(q)=7 and in 4 cases u(q)=9. E.g., for r=11, 23, 43, 55 A074473(64k+r)=9 independently of k.
From _Mike Winkler_, Sep 12 2017: (Start)
The next table shows how the theorem works. No entry is equal to zero.
  k =        3  4  5   6   7   8   9  10  11   12 .. | a(n)=
-----------------------------------------------------|
  n =  2  |  1                                       |    1
  n =  3  |  1  1                                    |    2
  n =  4  |     2  1                                 |    3
  n =  5  |        3   1                             |    4
  n =  6  |        3   4   1                         |    8
  n =  7  |            7   5   1                     |   13
  n =  8  |               12   6   1                 |   19
  n =  9  |               12  18   7   1             |   38
  n = 10  |                   30  25   8   1         |   64
  n = 11  |                   30  55  33   9    1    |  128
  :       |                        :   :   :    : .. |   :
-----------------------------------------------------|------
A100982(k) = 2  3  7  12  30  85 173 476 961 2652 .. |
The entries (n,k) in this table are generated by the rule (n+1,k) = (n,k) + (n,k-1). The last value of (n+1,k) is given by n+1 = A056576(k-1), or the highest value in column n is given twice only if A022921(k-2) = 2. Then a(n) is equal to the sum of the entries in row n. For k = 7 there is: 1 = 0 + 1, 5 = 1 + 4, 12 = 5 + 7, 12 = 12 + 0. It is a(9) = 12 + 18 + 7 + 1 = 38. The sum of column k is equal to A100982(k). (End)
		

Crossrefs

Programs

  • C
    /* call as follows: uint64_t s=survives(0,1,1,0,bits); */
    uint64_t survives(uint64_t r, uint64_t m, uint64_t lm, int p2, int fp2)
    {
        while(!(m&1) && (m>=lm)) {
            if(r&1) { r+=(r+1)>>1; m+=m>>1; }
            else { r>>=1; m>>=1; }
        }
        if(mPhil Carmody, Sep 08 2011 */
    
  • PARI
    /* algorithm for the Theorem */
    {limit=30; /*or limit>30*/ R=matrix(limit,limit); R[2,1]=0; R[2,2]=1; for(k=2, limit, if(k>2, print; print1("For n="k-1" in row n: ")); Kappa_k=floor(k*log(3)/log(2)); for(n=k, Kappa_k, R[n+1,k]=R[n,k]+R[n,k-1]); t=floor(1+(k-1)*log(2)/log(3)); a_n=0; for(i=t, k-1, print1(R[k,i]", "); a_n=a_n+R[k,i]); if(k>2, print; print(" and the sum is a(n)="a_n)))} \\ Mike Winkler, Sep 12 2017

Formula

a(n) = Sum_{k=A020915(n+2)..n+1} (n,k). (Theorem, cf. example) - Mike Winkler, Sep 12 2017
From Vladimir M. Zarubin, Aug 11 2019: (Start)
a(0) = 1, a(1) = 1, and for k > 0,
a(A020914(k)) = 2*a(A020914(k)-1) - A100982(k),
a(A054414(k)) = 2*a(A054414(k)-1). (End)
a(n) = 2^n - 2^n*Sum_{k=0..A156301(n)-1} A186009(k+1)/2^A020914(k). - Benjamin Lombardo, Sep 08 2019

Extensions

New terms to n=39 by Phil Carmody, Sep 08 2011

A182137 Size of the set of b for numbers of the form 2^n*x + b that cannot be the smallest element of a set giving a duration of infinite flight in the Collatz problem.

Original entry on oeis.org

1, 3, 6, 13, 28, 56, 115, 237, 474, 960, 1920, 3870, 7825, 15650, 31473, 63422, 126844, 254649, 509298, 1021248, 2050541, 4101082, 8219801, 16490635, 32981270, 66071490, 132455435, 264910870, 530485275, 1060970550, 2123841570, 4253619813, 8507239626, 17027951548, 34095896991, 68191793982, 136471574881, 272943149762, 546144278026, 1093108792776, 2186217585552
Offset: 1

Views

Author

Jérôme STORTI, Apr 14 2012

Keywords

Comments

In the Collatz Problem A014682, it is possible to apply the algorithm to first degree polynomials like 2^n*x+b, where n is an integer and 0 <= b < 2^n. The iteration terminates by two cases:
1) a*x+b where a < 2^n: the polynomial is "minimized"
2) a*x+b where a is odd and a > 2^n, parity cannot be found. The polynomial cannot be minimized.
The sequence counts how many first degree polynomials end like first case for each n > 0.
The interest of this sequence is that every number that can be described by a minimized polynomial cannot be the smallest element of a set of value of T(n) = infinity.

Examples

			Example with 4x+b (0 <= b < 4):
4x is even, thus gives 2x, 2 < 4 (first case).
4x+1, is odd thus 3(4x+1)+1 = 12x+4 is even, thus (12x+4)/2/2=3x+1 3 < 4, first case.
4x+2 is even, (4x+2)/2=2x+1, 2 < 4, first case.
4x+3 with same way gives 9x+8. 9 is odd and 9 > 4, second case.
That explains why the second (n=2) term in sequence is 3.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{b, p0, p1, minimized = 0}, For[b = 1, b <= 2^n, b++, {p0, p1} = {b, 2^n}; While[Mod[p1, 2] == 0 && p1 >= 2^n, {p0, p1} = If[Mod[p0, 2] == 0, {p0/2, p1/2}, {3*p0+1, 3*p1}]; If[p1<2^n, minimized += 1]]]; minimized]; Table[Print[an = a[n]]; an, {n, 1, 40}] (* Jean-François Alcover, Feb 12 2014, translated from D. S. McNeil's Sage code *)
  • PARI
    upto(P=18)= my(r=Vec([1, 1], P)); forstep(x=3,2^P,4, my(s=x, p=0); until(s<=x, s= if(s%2, 3*s+1, s)/2; if(p++ > P, next(2))); if((2^p>x), r[p]++)); for(i=2, #r, r[i]+= 2*r[i-1]); print(r); \\ Ruud H.G. van Tol, Mar 13 2023
  • Sage
    def A182137(n):
        minimized = 0
        for b in range(2**n):
            p = [b, 2**n]
            while p[1] % 2 == 0 and p[1] >= 2**n:
                p[0],p[1] = [p[0]/2, p[1]/2] if p[0] % 2 == 0 else [3*p[0]+1, 3*p[1]]
            if p[1] < 2**n: minimized += 1
        return minimized # D. S. McNeil, Apr 14 2012
    

Formula

a(n) = 2^n - A076227(n) for n >= 2. - Ruud H.G. van Tol, Mar 13 2023
For n not in A020914, a(n) = 2*a(n-1). - Ruud H.G. van Tol, Apr 12 2023

Extensions

More terms from D. S. McNeil, Apr 14 2012
a(31) from Jérôme STORTI, Apr 22 2012
a(32)-a(38) from Jérôme STORTI, Jul 21 2012
a(39) from Jérôme STORTI, Jul 26 2012
a(40) from Jérôme STORTI, Feb 08 2014
a(37) and a(39) corrected by Jérôme STORTI, Dec 29 2021
Showing 1-2 of 2 results.