A243128 Squarefree numbers k such that 4k <= sum of squarefree divisors of 4k.
3, 15, 21, 33, 35, 39, 51, 57, 69, 87, 93, 105, 111, 123, 129, 141, 159, 165, 177, 183, 195, 201, 213, 219, 231, 237, 249, 255, 267, 273, 285, 291, 303, 309, 321, 327, 339, 345, 357, 381, 385, 393, 399, 411, 417, 429, 435, 447, 453
Offset: 1
Keywords
Examples
3 is in this sequence because 3 is squarefree and 4*3 = A048250(4*3) = 12; 21 is in this sequence because 21 is squarefree and 4*21 = 84 < A048250(4*21) = 96.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[2Range[250] + 1, MoebiusMu[#] != 0 && DivisorSigma[1, #]/# >= 4/3 &] (* Alonso del Arte, May 31 2014 *)
-
PARI
isok(n) = issquarefree(n) && (sumdiv(4*n, d, issquarefree(d)*d) >= 4*n); \\ Michel Marcus, May 30 2014
-
PARI
is(n)=my(f=factor(n)); n%2 && n>1 && vecmax(f[,2])==1 && sigma(f,-1) >= 4/3 \\ Charles R Greathouse IV, May 30 2014
Comments