A243149 Number of compositions of n such that the sum of the parts counted without multiplicities is equal to the sum of all multiplicities.
1, 1, 0, 0, 4, 3, 4, 0, 11, 31, 70, 177, 242, 382, 482, 874, 1655, 4440, 10696, 24390, 49867, 95850, 172980, 289229, 492233, 811753, 1468084, 2813206, 5929361, 12780690, 27858421, 59275097, 122326098, 243179349, 467856049, 873044584, 1588187110, 2842593612
Offset: 0
Keywords
Examples
a(8) = 11: [1,1,3,3], [1,3,1,3], [1,3,3,1], [3,1,1,3], [3,1,3,1], [3,3,1,1], [1,1,1,1,4], [1,1,1,4,1], [1,1,4,1,1], [1,4,1,1,1], [4,1,1,1,1].
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..200
Crossrefs
Cf. A114638 (the same for partitions).
Programs
-
Maple
b:= proc(n, i, p) option remember; `if`(n=0, p!, `if`(i<1, 0, expand(add(x^`if`(j=0, 0, i-j)* b(n-i*j, i-1, p+j)/j!, j=0..n/i)))) end: a:= n-> coeff(b(n$2, 0), x, 0): seq(a(n), n=0..50);
-
Mathematica
b[n_, i_, p_] := b[n, i, p] = If[n == 0, p!, If[i < 1, 0, Expand[Sum[x^If[j == 0, 0, i - j]*b[n - i*j, i - 1, p + j]/j!, {j,0, n/i}]]]]; a[n_] := Coefficient[b[n, n, 0], x, 0]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, May 21 2018, translated from Maple *)