A243172 Nonnegative integers of the form x^2 + 3*x*y - 3*y^2 (discriminant 21).
0, 1, 4, 7, 9, 15, 16, 25, 28, 36, 37, 43, 49, 51, 60, 63, 64, 67, 79, 81, 85, 100, 105, 109, 112, 121, 123, 127, 135, 141, 144, 148, 151, 163, 169, 172, 175, 177, 193, 196, 204, 205, 211, 225, 235, 240, 249, 252, 256, 259, 267, 268, 277, 289, 295, 301, 303, 316, 324, 331, 333, 337, 340, 343, 357, 361, 373, 375, 379, 387, 393, 400, 415, 420, 421, 436, 441, 445, 448, 457, 459, 463, 469, 484, 487, 492, 499
Offset: 1
Keywords
Links
- Gheorghe Coserea, Table of n, a(n) for n = 1..100001
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
Programs
-
Mathematica
A={}; For[ n=0, n <= 300, n++, If[ Length[ Reduce[x^2 + 3 x y - 3 y^2 - n == 0, {x,y}, Integers]]>0, AppendTo[A,n]]]; A
-
PARI
\\ From Bill Allombert, Jun 04 2014. Since 21 is a fundamental discriminant, and the polynomial is unitary, the following code works: B=bnfinit(x^2+3*x-3); select(n->#bnfisintnorm(B,n),[1..500])
Comments