cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243172 Nonnegative integers of the form x^2 + 3*x*y - 3*y^2 (discriminant 21).

Original entry on oeis.org

0, 1, 4, 7, 9, 15, 16, 25, 28, 36, 37, 43, 49, 51, 60, 63, 64, 67, 79, 81, 85, 100, 105, 109, 112, 121, 123, 127, 135, 141, 144, 148, 151, 163, 169, 172, 175, 177, 193, 196, 204, 205, 211, 225, 235, 240, 249, 252, 256, 259, 267, 268, 277, 289, 295, 301, 303, 316, 324, 331, 333, 337, 340, 343, 357, 361, 373, 375, 379, 387, 393, 400, 415, 420, 421, 436, 441, 445, 448, 457, 459, 463, 469, 484, 487, 492, 499
Offset: 1

Views

Author

N. J. A. Sloane, Jun 01 2014

Keywords

Comments

Also numbers representable as x^2 + 5*x*y + y^2 with 0 <= x <= y. - Gheorghe Coserea, Jul 29 2018
Also numbers of the form x^2 - x*y - 5*y^2 with 0 <= x <= y (or x^2 + x*y - 5*y^2 with x, y nonnegative). - Jianing Song, Jul 31 2018
Also nonnegative numbers of the form 7*x^2 - 3*y^2. - Jon E. Schoenfield, Jun 03 2022

Crossrefs

Cf. A031363.
Primes: A141159.

Programs

  • Mathematica
    A={}; For[ n=0, n <= 300, n++,
        If[ Length[ Reduce[x^2 + 3 x y - 3 y^2 - n == 0, {x,y}, Integers]]>0, AppendTo[A,n]]]; A
  • PARI
    \\ From Bill Allombert, Jun 04 2014. Since 21 is a fundamental discriminant, and the polynomial is unitary, the following code works:
    B=bnfinit(x^2+3*x-3); select(n->#bnfisintnorm(B,n),[1..500])