cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A141167 Primes of the form 8*x^2+x*y-8*y^2.

Original entry on oeis.org

61, 67, 113, 157, 193, 197, 227, 241, 257, 419, 499, 587, 631, 643, 653, 739, 821, 823, 859, 863, 907, 929, 947, 971, 997, 1019, 1039, 1051, 1087, 1181, 1187, 1217, 1289, 1303, 1319, 1373, 1511, 1531, 1637, 1777, 1783, 1801, 1913, 1997, 2027, 2039, 2069, 2087, 2129, 2213
Offset: 1

Views

Author

Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (sergarmor(AT)yahoo.es), Jun 12 2008

Keywords

Comments

Discriminant = 257. Class = 3. Binary quadratic forms a*x^2+b*x*y+c*y^2 have discriminant d=b^2-4ac and gcd(a,b,c)=1.

Examples

			a(6)=197 because we can write 197 = 8*5^2+5*1-8*1^2.
		

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory

Crossrefs

Numbers of the form 8x^2+xy-8y^2 in A243180.
Cf. A038872 (d=5). A038873 (d=8). A068228, A141123 (d=12). A038883 (d=13). A038889 (d=17). A141111, A141112 (d=65). A141168 (d=257).
For a list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.

Programs

  • Mathematica
    q := 8*x^2 + x*y - 8*y^2; pmax = 3000; xmax = xmax0 = 50; ymin = ymin0 = -50; ymax = ymax0 = 50; k = 1.3 (* expansion coeff. for maxima *) ; dx = dy = 2; prms0 = {}; prms = {2}; While[prms != prms0, xx = yy = {}; prms0 = prms; prms = Reap[Do[p = q; If[2 <= p <= pmax && PrimeQ[p], AppendTo[xx, x]; AppendTo[yy, y]; Sow[p]], {x, 1, If[xmax == xmax0, xmax, Floor[k*xmax]], dx}, {y, If[ymin == ymin0, ymin, Floor[k*ymin]], If[ymax == ymax0, ymax, Floor[k*ymax]]}, dy]][[2, 1]] // Union; xmax = Max[xx]; ymin = Min[yy]; ymax = Max[yy]; Print[Length[prms], " terms", "  xmax = ", xmax, "  ymin = ", ymin, "  ymax = ", ymax ]]; A141167 = prms (* Jean-François Alcover, Oct 26 2016 *)
  • Sage
    # The function binaryQF is defined in the link 'Binary Quadratic Forms'.
    Q = binaryQF([8, 1, -8])
    print(Q.represented_positives(2213, 'prime')) # Peter Luschny, Oct 26 2016

A304441 Numbers k such that 8k, 8k+1 and 8k+2 are the sum of two squares; A082982 / 8.

Original entry on oeis.org

0, 1, 2, 9, 10, 18, 29, 36, 45, 65, 72, 73, 100, 101, 136, 137, 144, 153, 164, 200, 208, 218, 225, 234, 245, 281, 288, 289, 298, 324, 325, 353, 416, 424, 441, 450, 514, 522, 541, 578, 640, 648, 666, 676, 738, 757
Offset: 1

Views

Author

M. F. Hasler, May 13 2018

Keywords

Comments

Numbers n such that n and n+1 are in the sequence: 0, 1, 9, 72, 100, 136, 288, 324, ...: appear to be in A155562, A140612, and A243180, and in A020684 (except for 1), A034024 & A135571 (except for 0, 1).

Crossrefs

Programs

Formula

a(n) = A082982(n) / 8.
Showing 1-2 of 2 results.