cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A082982 Numbers k such that k, k+1 and k+2 are sums of 2 squares.

Original entry on oeis.org

0, 8, 16, 72, 80, 144, 232, 288, 360, 520, 576, 584, 800, 808, 1088, 1096, 1152, 1224, 1312, 1600, 1664, 1744, 1800, 1872, 1960, 2248, 2304, 2312, 2384, 2592, 2600, 2824, 3328, 3392, 3528, 3600, 4112, 4176, 4328, 4624, 5120, 5184, 5328, 5408, 5904, 6056
Offset: 1

Views

Author

Xavier Xarles (xarles(AT)mat.uab.es), May 28 2003

Keywords

Comments

All terms are multiples of 8, cf. A304441. - M. F. Hasler, May 13 2018

Examples

			80 is here because 80=4^2+8^2, 81=0^2+9^2 and 82=1^2+9^2.
		

Crossrefs

Programs

  • PARI
    issumsq(n) = {ok = 0; for (i=0, ceil(sqrt(n/2)), if (issquare(n - i^2), return (1));); return (0);}
    isok(n) = issumsq(n) && issumsq(n+1) && issumsq(n+2) \\ Michel Marcus, Jun 30 2013
    
  • PARI
    is_A082982(n)={n%8==0&&is_A001481(n\8)&&is_A001481(n\2+1)&&is_A001481(n+1)} \\ using is_A001481 is much faster than the issumsq() above. - M. F. Hasler, May 13 2018

Formula

a(n) = 8*A304441(n). - M. F. Hasler, May 13 2018

Extensions

More terms from Michel Marcus, Jun 30 2013

A328224 Numbers k such that each of k, k+1, k+2, and k+4 is a sum of two squares.

Original entry on oeis.org

0, 16, 144, 288, 576, 1152, 1600, 2304, 3328, 3600, 4624, 5184, 7056, 8352, 10368, 10656, 10816, 11808, 12112, 12240, 12544, 13120, 13840, 16704, 17424, 19600, 19728, 20736, 20752, 21312, 21904, 22048, 23200, 24480, 24784, 25920, 27792, 28960, 29520, 29824, 30976, 31264, 32400
Offset: 1

Views

Author

Max Alekseyev, Oct 08 2019

Keywords

Comments

All terms are divisible by 16. - Robert Israel, Oct 10 2019

Crossrefs

Intersection of A082982 and A328223.

Programs

  • Magma
    [k:k in [0..33000]| forall{k+a: a in [0,1,2,4]|NormEquation(1, k+a) eq true}]; // Marius A. Burtea, Oct 08 2019
  • Maple
    ss:=  proc(n) option remember;
      andmap(t -> t[2]::even or t[1] mod 4 <> 3, ifactors(n)[2])
    end proc:
    select(k -> ss(k) and ss(k+1) and ss(k+2) and ss(k+4), 16*[$0..10^4]); # Robert Israel, Oct 10 2019
  • Mathematica
    ok[n_] := AllTrue[{0,1,2,4}, SquaresR[2, #+n] > 0 &]; Select[ Range[0, 32400], ok] (* Giovanni Resta, Oct 08 2019 *)

A328223 Numbers k such that both k and k+4 are sums of two squares.

Original entry on oeis.org

0, 1, 4, 5, 9, 13, 16, 25, 32, 36, 37, 41, 45, 49, 61, 64, 68, 81, 85, 97, 100, 109, 113, 117, 121, 144, 145, 149, 153, 160, 169, 181, 193, 196, 208, 221, 225, 229, 241, 256, 257, 261, 265, 277, 288, 289, 292, 313, 320, 324, 333, 349, 356, 361, 365, 369, 373, 388, 397, 400
Offset: 1

Views

Author

Max Alekseyev, Oct 08 2019

Keywords

Crossrefs

Subsequence of A001481. Contains A328224 as a subsequence.

Programs

  • Magma
    [k: k in [0..400] | NormEquation(1, k) eq true and NormEquation(1, k+4) eq true]; // Marius A. Burtea, Oct 08 2019
  • Mathematica
    ok[n_] := AllTrue[{0, 4}, SquaresR[2, # + n] > 0 &]; Select[Range[0, 400], ok] (* Giovanni Resta, Oct 08 2019 *)
Showing 1-3 of 3 results.