A328224 Numbers k such that each of k, k+1, k+2, and k+4 is a sum of two squares.
0, 16, 144, 288, 576, 1152, 1600, 2304, 3328, 3600, 4624, 5184, 7056, 8352, 10368, 10656, 10816, 11808, 12112, 12240, 12544, 13120, 13840, 16704, 17424, 19600, 19728, 20736, 20752, 21312, 21904, 22048, 23200, 24480, 24784, 25920, 27792, 28960, 29520, 29824, 30976, 31264, 32400
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[k:k in [0..33000]| forall{k+a: a in [0,1,2,4]|NormEquation(1, k+a) eq true}]; // Marius A. Burtea, Oct 08 2019
-
Maple
ss:= proc(n) option remember; andmap(t -> t[2]::even or t[1] mod 4 <> 3, ifactors(n)[2]) end proc: select(k -> ss(k) and ss(k+1) and ss(k+2) and ss(k+4), 16*[$0..10^4]); # Robert Israel, Oct 10 2019
-
Mathematica
ok[n_] := AllTrue[{0,1,2,4}, SquaresR[2, #+n] > 0 &]; Select[ Range[0, 32400], ok] (* Giovanni Resta, Oct 08 2019 *)
Comments