cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243181 Numbers of the form 4x^2+9xy-11y^2.

Original entry on oeis.org

0, 2, 4, 8, 11, 13, 16, 17, 18, 22, 23, 26, 29, 31, 32, 34, 36, 44, 46, 50, 52, 58, 59, 62, 64, 68, 72, 73, 79, 88, 89, 92, 98, 99, 100, 104, 116, 117, 118, 121, 122, 124, 128, 134, 136, 137, 139, 143, 144, 146, 153, 158, 162, 169, 173, 176, 178, 184, 187, 196, 198, 199, 200, 207, 208, 211, 221, 223, 226, 232, 234, 236, 239, 242, 244, 248, 253, 256, 261, 268
Offset: 1

Views

Author

N. J. A. Sloane, Jun 02 2014

Keywords

Comments

Discriminant 257.
16*a(n) has the form z^2 - 257*y^2, where z = 8*x+9*y. [Bruno Berselli, Jun 20 2014]

Crossrefs

Primes: A141168.

Programs

  • Mathematica
    maxTerm = 300; m0 = 10; dm = 10; Clear[f]; f[m_] := f[m] = Table[4*x^2 + 9 x*y - 11*y^2 , {x, -m, m}, {y, -m, m}] // Flatten // Union // Select[#, 0 <= # <= maxTerm&]&; f[m0]; f[m = m0]; While[f[m] != f[m - dm], m = m + dm]; f[m] (* Jean-François Alcover, Jun 04 2014 *) (* Brute force search, so not guaranteed to find all solutions, I believe. - N. J. A. Sloane, Jun 05 2014 *)
    Reap[For[n = 0, n <= 30, n++,
       If[Reduce[4*x^2 + 9*x*y - 11*y^2 == n, {x, y}, Integers] =!= False, Sow[n]]]][[2, 1]] (* Better program, not brute force, but slow. Confirms the terms up through 29. - N. J. A. Sloane, Jun 05 2014 *)