A243202 Coefficients of a particular decomposition of N^N in terms of binomial coefficients.
0, 0, 1, 0, 1, 2, 0, 3, 4, 6, 0, 16, 16, 18, 24, 0, 125, 100, 90, 96, 120, 0, 1296, 864, 648, 576, 600, 720, 0, 16807, 9604, 6174, 4704, 4200, 4320, 5040, 0, 262144, 131072, 73728, 49152, 38400, 34560, 35280, 40320, 0
Offset: 0
Examples
The first rows of the triangle are (first item is the row number N): 0 0 1 0, 1 2 0, 1, 2 3 0, 3, 4, 6 4 0, 16, 16, 18, 24 5 0, 125, 100, 90, 96, 120 6 0, 1296, 864, 648, 576, 600, 720 7 0, 16807, 9604, 6174, 4704, 4200, 4320, 5040 8 0, 262144, 131072, 73728, 49152, 38400, 34560, 35280, 40320
Links
- Stanislav Sykora, Table of n, a(n) for rows 0..100, flattened
- S. Sykora, A Random Mapping Statistics and a Related Identity, Stan's Library, Volume V, June 2014.
Crossrefs
Cf. A243203.
Programs
-
PARI
A243202(maxrow) = { my(v,n,j,irow,f);v = vector((maxrow+1)*(maxrow+2)/2); for(n=1,maxrow,irow=1+n*(n+1)/2;v[irow]=0;f=1; for(j=1,n,f *= j;v[irow+j] = j*f*n^(n-j-1););); return(v);}
Formula
c(N,j)=N^(N-j)*(j/N)*j! for N>0 and 0<=j<=N, and c(N,j)=0 otherwise.
Comments