A243223 Number of partitions of n into positive summands in arithmetic progression with common difference 3.
0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 0, 2, 1, 1, 1, 1, 1, 2, 0, 1, 2, 1, 0, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 0, 3, 1, 1, 1, 1, 2, 3, 0, 1, 2, 2, 0, 3, 1, 1, 2, 1, 1, 3, 0, 2, 2, 1, 0, 3, 3, 1, 1, 1, 1, 4, 0, 2, 2, 1, 1, 3, 1, 1, 2, 2, 1, 3, 0, 1, 3, 2, 1, 3, 1, 2, 1, 1
Offset: 1
Keywords
Examples
a(15) = 2 because 15 = 6 + 9 = 2 + 5 + 8.
Links
- Jean-Christophe Hervé, Table of n, a(n) for n = 1..10045
- J. W. Andrushkiw, R. I. Andrushkiw and C. E. Corzatt, Representations of Positive Integers as Sums of Arithmetic Progressions, Mathematics Magazine, Vol. 49, No. 5 (Nov., 1976), pp. 245-248.
- M. A. Nyblom and C. Evans, On the enumeration of partitions with summands in arithmetic progression, Australasian Journal of Combinatorics, Vol. 28 (2003), pp. 149-159.
Comments