cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243228 Number of isoscent sequences of length n with exactly two ascents.

Original entry on oeis.org

3, 25, 128, 525, 1901, 6371, 20291, 62407, 187272, 552104, 1606762, 4631643, 13256644, 37742047, 107025452, 302585780, 853556449, 2403702976, 6760469822, 18995826302, 53336990264, 149680752886, 419883986837, 1177504825907, 3301408010791, 9254726751126
Offset: 4

Views

Author

Joerg Arndt and Alois P. Heinz, Jun 01 2014

Keywords

Crossrefs

Column k=2 of A242351.

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n<1, 1, expand(add(
          `if`(j>i, x, 1) *b(n-1, j, t+`if`(j=i, 1, 0)), j=0..t+1)))
        end:
    a:= n-> coeff(b(n-1, 0$2), x, 2):
    seq(a(n), n=4..35);
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n < 1, 1, Expand[Sum[ If[j > i, x, 1] *b[n - 1, j, t + If[j == i, 1, 0]], {j, 0, t + 1}]]]; a[n_] := Coefficient [b[n - 1, 0, 0], x, 2]; Table[a[n], {n, 4, 35}] (* Jean-François Alcover, Feb 09 2015, after Maple *)

Formula

Recurrence: (3*n^3 - 43*n^2 + 120*n + 20)*a(n) = (21*n^3 - 289*n^2 + 712*n + 400)*a(n-1) - (51*n^3 - 665*n^2 + 1374*n + 1540)*a(n-2) + 4*(12*n^3 - 145*n^2 + 230*n + 435)*a(n-3) - (9*n^3 - 87*n^2 + 26*n + 280)*a(n-4) - 2*(3*n^3 - 34*n^2 + 43*n + 100)*a(n-5). - Vaclav Kotesovec, Aug 27 2014
a(n) ~ c * d^n, where d = 2.8019377358048382524722... is the root of the equation 1 + 3*d - 4*d^2 + d^3 = 0, c = 0.9786935821895919379992... is the root of the equation 1 - 49*c^2 + 49*c^3 = 0. - Vaclav Kotesovec, Aug 27 2014
G.f.: x^4*(3 - 5*x + x^2)*(1 - x - x^2) / ((1 - x)^3*(1 - 2*x)^2*(1 - 4*x + 3*x^2 + x^3)) (conjectured). - Colin Barker, May 05 2019