A243228 Number of isoscent sequences of length n with exactly two ascents.
3, 25, 128, 525, 1901, 6371, 20291, 62407, 187272, 552104, 1606762, 4631643, 13256644, 37742047, 107025452, 302585780, 853556449, 2403702976, 6760469822, 18995826302, 53336990264, 149680752886, 419883986837, 1177504825907, 3301408010791, 9254726751126
Offset: 4
Keywords
Links
- Joerg Arndt and Alois P. Heinz, Table of n, a(n) for n = 4..1000
Crossrefs
Column k=2 of A242351.
Programs
-
Maple
b:= proc(n, i, t) option remember; `if`(n<1, 1, expand(add( `if`(j>i, x, 1) *b(n-1, j, t+`if`(j=i, 1, 0)), j=0..t+1))) end: a:= n-> coeff(b(n-1, 0$2), x, 2): seq(a(n), n=4..35);
-
Mathematica
b[n_, i_, t_] := b[n, i, t] = If[n < 1, 1, Expand[Sum[ If[j > i, x, 1] *b[n - 1, j, t + If[j == i, 1, 0]], {j, 0, t + 1}]]]; a[n_] := Coefficient [b[n - 1, 0, 0], x, 2]; Table[a[n], {n, 4, 35}] (* Jean-François Alcover, Feb 09 2015, after Maple *)
Formula
Recurrence: (3*n^3 - 43*n^2 + 120*n + 20)*a(n) = (21*n^3 - 289*n^2 + 712*n + 400)*a(n-1) - (51*n^3 - 665*n^2 + 1374*n + 1540)*a(n-2) + 4*(12*n^3 - 145*n^2 + 230*n + 435)*a(n-3) - (9*n^3 - 87*n^2 + 26*n + 280)*a(n-4) - 2*(3*n^3 - 34*n^2 + 43*n + 100)*a(n-5). - Vaclav Kotesovec, Aug 27 2014
a(n) ~ c * d^n, where d = 2.8019377358048382524722... is the root of the equation 1 + 3*d - 4*d^2 + d^3 = 0, c = 0.9786935821895919379992... is the root of the equation 1 - 49*c^2 + 49*c^3 = 0. - Vaclav Kotesovec, Aug 27 2014
G.f.: x^4*(3 - 5*x + x^2)*(1 - x - x^2) / ((1 - x)^3*(1 - 2*x)^2*(1 - 4*x + 3*x^2 + x^3)) (conjectured). - Colin Barker, May 05 2019