cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243229 Number of isoscent sequences of length n with exactly three ascents.

Original entry on oeis.org

17, 229, 1819, 11172, 58847, 280158, 1242859, 5238042, 21245548, 83685745, 322225735, 1218705577, 4544214608, 16751906196, 61188410692, 221832968059, 799344529621, 2865983103387, 10233713828145, 36419029944617, 129245774064864, 457623216922119
Offset: 6

Views

Author

Joerg Arndt and Alois P. Heinz, Jun 01 2014

Keywords

Crossrefs

Column k=3 of A242351.

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n<1, 1, expand(add(
          `if`(j>i, x, 1) *b(n-1, j, t+`if`(j=i, 1, 0)), j=0..t+1)))
        end:
    a:= n-> coeff(b(n-1, 0$2), x, 3):
    seq(a(n), n=6..35);
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n < 1, 1, Expand[Sum[
        If[j>i, x, 1] *b[n-1, j, t + If[j == i, 1, 0]], {j, 0, t+1}]]];
    a[n_] := Coefficient[b[n - 1, 0, 0], x, 3];
    Table[a[n], {n, 6, 35}] (* Jean-François Alcover, Aug 27 2021, after Maple code *)

Formula

G.f.: x^6*(17 - 213*x + 1118*x^2 - 3135*x^3 + 4851*x^4 - 3492*x^5 - 262*x^6 + 1707*x^7 + 82*x^8 - 1050*x^9 + 189*x^10 + 297*x^11 - 122*x^12 + 11*x^13 + 3*x^14) / ((1 - x)^4*(1 - 2*x)^3*(1 - 4*x + 3*x^2 + x^3)^2*(1 - 8*x + 21*x^2 - 18*x^3 - 3*x^4 + 5*x^5 + 3*x^6)) (conjectured). - Colin Barker, May 04 2019