cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243243 Number of unlabeled, connected graphs on n vertices with at least one subgraph isomorphic to a C_4, where C_4 is the cycle graph on four vertices.

Original entry on oeis.org

0, 0, 0, 3, 13, 93, 796, 10931, 260340, 11713182, 1006682063, 164059710255, 50335906936959, 29003487454251217, 31397381142667479256, 63969560113223974443840, 245871831682084008526845525, 1787331725248899088577102145274, 24636021429399867655316345340289103
Offset: 1

Views

Author

Travis Hoppe and Anna Petrone, Jun 01 2014

Keywords

Crossrefs

Programs

  • Mathematica
    terms = 19;
    mob[m_, n_] := If[Mod[m, n] == 0, MoebiusMu[m/n], 0];
    EULERi[b_] := Module[{a, c, i, d}, c = {}; For[i = 1, i <= Length[b], i++, c = Append[c, i*b[[i]] - Sum[c[[d]]*b[[i - d]], {d, 1, i - 1}]]]; a = {}; For[i = 1, i <= Length[b], i++, a = Append[a, (1/i)*Sum[mob[i, d]*c[[d]], {d, 1, i}]]]; Return[a]];
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_] := Sum[GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total[Quotient[v, 2]];
    a88[n_] := Module[{s = 0}, Do[s += permcount[p]*2^edges[p], {p, IntegerPartitions[n]}]; s/n!];
    A001349 = EULERi[Array[a88, terms]];
    A006786 = {1, 2, 4, 8, 18, 44, 117, 351, 1230, 5069, 25181, 152045, 1116403, 9899865, 104980369, 1318017549, 19427531763, 333964672216, 6660282066936};
    A077269 = EULERi[A006786];
    A001349 - A077269 (* Jean-François Alcover, Feb 15 2019, after Andrew Howroyd in A001349 and A077269 *)

Formula

a(n) = A001349(n) - A077269(n).

Extensions

a(11)-a(17) using formula from Falk Hüffner, Jan 15 2016
a(18)-a(19) from Jean-François Alcover, Feb 15 2019 using Andrew Howroyd's code.