A243308 Decimal expansion of h_3, a constant related to certain evaluations of the gamma function from elliptic integrals.
1, 0, 1, 7, 4, 0, 8, 7, 9, 7, 5, 9, 5, 9, 5, 6, 0, 0, 8, 6, 6, 9, 5, 3, 8, 7, 5, 3, 3, 5, 0, 0, 6, 3, 4, 2, 5, 9, 9, 5, 2, 5, 6, 9, 1, 8, 5, 4, 5, 4, 1, 1, 8, 9, 9, 9, 1, 5, 0, 5, 4, 2, 3, 7, 5, 3, 5, 2, 1, 2, 4, 3, 1, 8, 0, 6, 2, 5, 0, 1, 6, 3, 9, 4, 4, 2, 3, 6, 6, 6, 5, 0, 9, 7, 6, 1, 2, 0, 0, 7, 9, 2, 7
Offset: 1
Examples
1.0174087975959560086695387533500634259952569...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 1.5.4 Gamma function, p. 34.
Links
- Eric Weisstein's MathWorld, Gamma function
Programs
-
Maple
Re(evalf(4*EllipticK(sqrt((4*sqrt(3)-7)))/(sqrt(2+sqrt(3))*Pi), 120)); # Vaclav Kotesovec, Apr 22 2015
-
Mathematica
RealDigits[4*EllipticK[4*Sqrt[3]-7]/(Sqrt[2+Sqrt[3]]*Pi), 10, 103] // First RealDigits[1/ArithmeticGeometricMean[1, Sqrt[2 + Sqrt[3]]/2], 10, 103][[1]] (* Jan Mangaldan, Jan 06 2017 *) RealDigits[2 EllipticK[(2 - Sqrt[3])/4]/Pi, 10, 103][[1]] (* Jan Mangaldan, Jan 06 2017 *)
Formula
4*K(4*sqrt(3)-7)/(sqrt(2+sqrt(3))*Pi), where K is the complete elliptic integral of the first kind.
3^(1/4)*GAMMA(1/3)^3/(2*2^(1/3)*Pi^2), where GAMMA is the Euler Gamma function.
GAMMA(1/6)^(3/2)/(2^(5/6)*sqrt(3)*Pi^(5/4)).