cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243308 Decimal expansion of h_3, a constant related to certain evaluations of the gamma function from elliptic integrals.

Original entry on oeis.org

1, 0, 1, 7, 4, 0, 8, 7, 9, 7, 5, 9, 5, 9, 5, 6, 0, 0, 8, 6, 6, 9, 5, 3, 8, 7, 5, 3, 3, 5, 0, 0, 6, 3, 4, 2, 5, 9, 9, 5, 2, 5, 6, 9, 1, 8, 5, 4, 5, 4, 1, 1, 8, 9, 9, 9, 1, 5, 0, 5, 4, 2, 3, 7, 5, 3, 5, 2, 1, 2, 4, 3, 1, 8, 0, 6, 2, 5, 0, 1, 6, 3, 9, 4, 4, 2, 3, 6, 6, 6, 5, 0, 9, 7, 6, 1, 2, 0, 0, 7, 9, 2, 7
Offset: 1

Views

Author

Jean-François Alcover, Jun 03 2014

Keywords

Examples

			1.0174087975959560086695387533500634259952569...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 1.5.4 Gamma function, p. 34.

Crossrefs

Programs

  • Maple
    Re(evalf(4*EllipticK(sqrt((4*sqrt(3)-7)))/(sqrt(2+sqrt(3))*Pi), 120)); # Vaclav Kotesovec, Apr 22 2015
  • Mathematica
    RealDigits[4*EllipticK[4*Sqrt[3]-7]/(Sqrt[2+Sqrt[3]]*Pi), 10, 103] // First
    RealDigits[1/ArithmeticGeometricMean[1, Sqrt[2 + Sqrt[3]]/2], 10, 103][[1]] (* Jan Mangaldan, Jan 06 2017 *)
    RealDigits[2 EllipticK[(2 - Sqrt[3])/4]/Pi, 10, 103][[1]] (* Jan Mangaldan, Jan 06 2017 *)

Formula

4*K(4*sqrt(3)-7)/(sqrt(2+sqrt(3))*Pi), where K is the complete elliptic integral of the first kind.
3^(1/4)*GAMMA(1/3)^3/(2*2^(1/3)*Pi^2), where GAMMA is the Euler Gamma function.
GAMMA(1/6)^(3/2)/(2^(5/6)*sqrt(3)*Pi^(5/4)).