A243309 Decimal expansion of DeVicci's tesseract constant.
1, 0, 0, 7, 4, 3, 4, 7, 5, 6, 8, 8, 4, 2, 7, 9, 3, 7, 6, 0, 9, 8, 2, 5, 3, 5, 9, 5, 2, 3, 1, 0, 9, 9, 1, 4, 1, 9, 2, 5, 6, 9, 0, 1, 1, 4, 1, 1, 3, 6, 6, 9, 7, 7, 0, 2, 3, 4, 9, 6, 3, 7, 9, 8, 5, 7, 1, 1, 5, 2, 3, 1, 3, 2, 8, 0, 2, 8, 6, 7, 7, 7, 9, 6, 2, 5, 2, 0, 5, 5, 1, 4, 7, 4, 6, 3, 5, 9, 2, 3, 9, 4, 2
Offset: 1
Examples
1.00743475688427937609825359523109914192569...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 8.14 DeVicci's tesseract constant, p. 524.
- Martin Gardner, Is It Possible to Visualize a Four-Dimensional Figure?, Mathematical Games, Sci. Amer., Vol. 215, No. 5, (Nov. 1966), pp. 138-143.
- Martin Gardner, Mathematical Carnival: A New Round-Up of Tantalizers and Puzzles from Scientific American, New York: Vintage Books, 1977, Chapter 4, "Hypercubes", pp. 41-54.
- Martin Gardner, The Colossal Book of Mathematics, New York, London: W. W. Norton & Co., 2001, Chapter 13, "Hypercubes", pp. 162-174.
Links
- Hallard T. Croft, Kenneth Falconer and Richard K. Guy, Unsolved Problems in Geometry, Springer-Verlag New York, 1991, Section B4, p. 53.
- Richard K. Guy and Richard J. Nowakowski, Monthly Unsolved Problems, 1969-1997, The American Mathematical Monthly, Vol. 104, No. 10 (1997), pp. 967-973.
- Greg Huber, Kay Pechenick Shultz and John E. Wetzel, The n-cube is Rupert, The American Mathematical Monthly, Vol. 125, No. 6 (2018), pp. 505-512.
- Kay R. Pechenick DeVicci Shultz, Largest m-Cube in an n-Cube: Partial Solution, Notes written in 1996 and assembled in 2013 with a preface by Greg Huber, KITP preprint NSF-ITP-13-142.
- Eric Weisstein's World of Mathematics, Prince Rupert's Cube.
- Wikipedia, Prince Rupert's cube.
- Index entries for algebraic numbers, degree 8
Crossrefs
Cf. A093577.
Programs
-
Mathematica
Root[4*x^8 - 28*x^6 - 7*x^4 + 16*x^2 + 16, x, 3] // RealDigits[#, 10, 103]& // First
-
PARI
polrootsreal(4*x^8-28*x^6-7*x^4+16*x^2+16)[3] \\ Charles R Greathouse IV, Apr 07 2016
-
PARI
sqrt(polrootsreal(Pol([4,-28,-7,16,16]))[1]) \\ Charles R Greathouse IV, Apr 07 2016
Formula
Positive root of the polynomial 4*x^8 - 28*x^6 - 7*x^4 + 16*x^2 + 16.
Comments