A243317 Decimal expansion of sqrt(8/Pi)*log(2), a constant related to the asymptotic evaluation of the minimum number of one-dimensional random walks that have to be examined to compute the maximum.
1, 1, 0, 6, 1, 0, 2, 8, 6, 7, 4, 6, 5, 6, 3, 2, 7, 4, 9, 2, 5, 1, 6, 7, 2, 8, 7, 8, 7, 1, 4, 6, 4, 3, 3, 9, 8, 8, 0, 2, 3, 9, 2, 6, 8, 3, 9, 3, 6, 9, 2, 1, 8, 0, 1, 3, 9, 7, 1, 9, 0, 5, 6, 9, 8, 9, 1, 4, 6, 3, 7, 4, 7, 1, 5, 3, 2, 6, 2, 3, 2, 8, 2, 2, 9, 8, 1, 1, 4, 3, 3, 1, 4, 4, 2, 5, 0, 5, 0, 3, 8, 9, 6, 2
Offset: 1
Examples
1.1061028674656327492516728787146433988...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.9 Polya's Random Walk Constants, p. 326.
Links
- Eric Weisstein's MathWorld, Polya's Random Walk Constants.
Programs
-
Mathematica
RealDigits[Sqrt[8/Pi]*Log[2], 10, 104] // First
-
PARI
sqrt(8/Pi)*log(2) \\ Stefano Spezia, Dec 14 2024
Formula
Equals sqrt(8/Pi)*log(2).