cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243366 Number T(n,k) of Dyck paths of semilength n having exactly k (possibly overlapping) occurrences of the consecutive steps UDUUDU (with U=(1,1), D=(1,-1)); triangle T(n,k), n>=0, 0<=k<=max(0,floor(n/2)-1), read by rows.

Original entry on oeis.org

1, 1, 2, 5, 13, 1, 37, 5, 112, 19, 1, 352, 70, 7, 1136, 259, 34, 1, 3742, 962, 149, 9, 12529, 3585, 627, 54, 1, 42513, 13399, 2584, 279, 11, 145868, 50201, 10529, 1334, 79, 1, 505234, 188481, 42606, 6092, 474, 13, 1764157, 709001, 171563, 27048, 2561, 109, 1
Offset: 0

Views

Author

Alois P. Heinz, Jun 03 2014

Keywords

Comments

Conjecture: Generally, column k is asymptotic to c(k) * d^n * n^(k-3/2), where d = 3.8821590268628506747194368909643384... is the root of the equation d^8 - 2*d^7 - 10*d^6 + 12*d^5 - 5*d^4 - 2*d^3 - 5*d^2 - 8*d - 3 = 0, and c(k) are specific constants (independent on n). - Vaclav Kotesovec, Jun 05 2014

Examples

			T(4,1) = 1: UDUUDUDD.
T(5,1) = 5: UDUDUUDUDD, UDUUDUDDUD, UDUUDUDUDD, UDUUDUUDDD, UUDUUDUDDD.
T(6,1) = 19: UDUDUDUUDUDD, UDUDUUDUDDUD, UDUDUUDUDUDD, UDUDUUDUUDDD, UDUUDUDDUDUD, UDUUDUDDUUDD, UDUUDUDUDDUD, UDUUDUDUDUDD, UDUUDUDUUDDD, UDUUDUUDDDUD, UDUUDUUDDUDD, UDUUDUUUDDDD, UUDDUDUUDUDD, UUDUDUUDUDDD, UUDUUDUDDDUD, UUDUUDUDDUDD, UUDUUDUDUDDD, UUDUUDUUDDDD, UUUDUUDUDDDD.
T(6,2) = 1: UDUUDUUDUDDD.
T(7,2) = 7: UDUDUUDUUDUDDD, UDUUDUDUUDUDDD, UDUUDUUDUDDDUD, UDUUDUUDUDDUDD, UDUUDUUDUDUDDD, UDUUDUUDUUDDDD, UUDUUDUUDUDDDD.
T(8,3) = 1: UDUUDUUDUUDUDDDD.
Triangle T(n,k) begins:
:  0 :     1;
:  1 :     1;
:  2 :     2;
:  3 :     5;
:  4 :    13,    1;
:  5 :    37,    5;
:  6 :   112,   19,   1;
:  7 :   352,   70,   7;
:  8 :  1136,  259,  34,  1;
:  9 :  3742,  962, 149,  9;
: 10 : 12529, 3585, 627, 54, 1;
		

Crossrefs

Row sums give A000108.
T(n,floor(n/2)-1) gives A093178(n) for n>3.
T(45,k) = A243752(45,k).
T(n,0) = A243753(n,45).

Programs

  • Maple
    b:= proc(x, y, t) option remember; `if`(y<0 or y>x, 0,
         `if`(x=0, 1, expand(b(x-1, y+1, [2, 2, 4, 5, 2, 4][t])*
         `if`(t=6, z, 1) +b(x-1, y-1, [1, 3, 1, 3, 6, 1][t]))))
        end:
    T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(2*n, 0, 1)):
    seq(T(n), n=0..20);
  • Mathematica
    b[x_, y_, t_] := b[x, y, t] = If[y<0 || y>x, 0, If[x == 0, 1, Expand[b[x-1, y+1, {2, 2, 4, 5, 2, 4}[[t]]]*If[t == 6, z, 1] + b[x-1, y-1, {1, 3, 1, 3, 6, 1}[[t]]]]]]; T[n_] := Function[{p}, Table[Coefficient[p, z, i], {i, 0, Exponent[p, z]}]][b[2*n, 0, 1]]; Table[T[n], {n, 0, 20}] // Flatten (* Jean-François Alcover, Feb 05 2015, after Alois P. Heinz *)