cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243373 Numbers m such that k*phi(n) = Sum_{j|n} sigma(j), where k >= 1 is an integer.

Original entry on oeis.org

1, 2, 6, 9, 10, 14, 18, 26, 42, 66, 90, 126, 150, 186, 234, 266, 342, 490, 666, 1426, 1634, 2394, 4410, 12834, 14706, 16758, 18846, 209754, 308602, 350154, 385434, 1122786, 2777418, 12130734, 15616986, 29682342, 223843466, 270397974, 300398714, 559894482
Offset: 1

Views

Author

Paolo P. Lava, Jun 04 2014

Keywords

Comments

a(49) > 10^11. - Hiroaki Yamanouchi, Aug 24 2014

Examples

			The divisors of 90 are 1, 2, 3, 5, 6, 9, 10, 15, 18, 30, 45, 90 and sigma(1) + sigma(2) + sigma(3) + sigma(5) + sigma(6) + sigma(9) + sigma(10) + sigma(15) + sigma(18) + sigma(30) + sigma(45) + sigma(90) = 1 + 3 + 4 + 6 + 12 + 13 + 18 + 24 + 39 + 72 + 78 + 234 = 504 and phi(n) = 24. Finally 504 / 24 = 21.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,b,k,n;
    for n from 1 to q do a:=divisors(n); b:=0;
    b:=add(sigma(a[k]), k=1..nops(a)); if type(b/phi(n),integer)
    then print(n); fi; od; end: P(10^10);
  • PARI
    isok(n) = (sumdiv(n, d, sigma(d)) % eulerphi(n)) == 0; \\ Michel Marcus, Jun 04 2014

Extensions

a(37)-a(40) from Hiroaki Yamanouchi, Aug 24 2014