cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243378 Decimal expansion of a constant related to the asymptotic evaluation of Product_{p prime congruent to 3 modulo 4} (1 + 1/p).

Original entry on oeis.org

9, 8, 5, 2, 4, 7, 5, 8, 1, 0, 0, 6, 0, 9, 6, 3, 4, 3, 6, 9, 0, 5, 1, 0, 6, 0, 4, 2, 9, 8, 8, 9, 6, 8, 0, 1, 0, 8, 1, 2, 1, 6, 4, 7, 9, 1, 4, 4, 4, 0, 2, 8, 2, 4, 7, 1, 7, 2, 1, 1, 8, 8, 9, 5, 6, 5, 1, 3, 3, 9, 1, 6, 2, 8, 8, 5, 1, 9, 2, 1, 9, 1, 2, 2, 7, 6, 2, 8, 5, 2, 2, 3, 3, 8, 4, 5, 3, 4, 4, 8, 9, 9
Offset: 0

Views

Author

Jean-François Alcover, Jun 04 2014

Keywords

Examples

			0.985247581006096343690510604298896801...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.3 Landau-Ramanujan constant, p. 101.

Crossrefs

Programs

  • Mathematica
    digits = 102; LandauRamanujanK = 1/Sqrt[2]*NProduct[((1 - 2^(-2^n))*Zeta[2^n]/DirichletBeta[2^n])^(1/2^(n + 1)), {n, 1, 24}, WorkingPrecision -> digits + 5]; 1/Sqrt[Pi]*Exp[EulerGamma/2]*1/LandauRamanujanK // RealDigits[#, 10, digits] & // First (* updated Mar 14 2018 *)

Formula

Equals (1/sqrt(Pi))*exp(gamma/2)*1/K, where gamma is the Euler-Mascheroni constant (A001620) and K the Landau-Ramanujan constant (A064533).
Equals 4/(Pi*A088540) = A088538/A088540. - Amiram Eldar, Nov 16 2021