A243403 Number of primes p < n such that p*(n-p) is a primitive root modulo prime(n).
0, 0, 1, 1, 2, 0, 3, 2, 3, 2, 1, 3, 3, 2, 3, 4, 4, 1, 4, 1, 2, 2, 5, 8, 5, 1, 1, 5, 3, 6, 6, 7, 6, 6, 4, 2, 4, 3, 6, 11, 6, 4, 3, 7, 6, 8, 3, 2, 10, 9, 6, 11, 2, 8, 9, 9, 5, 2, 5, 2, 3, 13, 5, 14, 8, 12, 7, 8, 9, 6, 13, 9, 4, 10, 3, 13, 12, 4, 8, 4
Offset: 1
Keywords
Examples
a(18) = 1 since 17 is prime with 17*(18-17) = 17 a primitive root modulo prime(18) = 61. a(20) = 1 since 11 is prime with 11*(20-11) = 99 a primitive root modulo prime(20) = 71. a(26) = 1 since 2 is prime with 2*(26-2) = 48 a primitive root modulo prime(26) = 101. a(27) = 1 since 17 is prime with 17*(27-17) = 170 a primitive root modulo prime(27) = 103.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, New observations on primitive roots modulo primes, arXiv:1405.0290 [math.NT], 2014.
Programs
-
Mathematica
dv[n_]:=Divisors[n] Do[m=0;Do[Do[If[Mod[(Prime[k]*(n-Prime[k]))^(Part[dv[Prime[n]-1],i]),Prime[n]]==1,Goto[aa]],{i,1,Length[dv[Prime[n]-1]]-1}];m=m+1;Label[aa];Continue,{k,1,PrimePi[n-1]}]; Print[n," ",m];Continue,{n,1,80}]
Comments