A243755 Primes p such that p is a primitive root modulo the next prime p' and also p' is a primitive root modulo p.
2, 3, 5, 11, 59, 61, 83, 101, 131, 151, 179, 181, 197, 251, 257, 269, 271, 317, 337, 347, 367, 419, 443, 461, 523, 563, 577, 587, 593, 659, 709, 733, 797, 811, 821, 827, 863, 947, 971, 977, 1061, 1063, 1069, 1097, 1129, 1153, 1171, 1187, 1217, 1229, 1277, 1283, 1301, 1361, 1433, 1451, 1543, 1553, 1601, 1619
Offset: 1
Keywords
Examples
a(1) = 2 since prime(1) = 2 is a primitive root modulo prime(2) = 3 and also prime(2) = 3 is a primitive root modulo prime(1) = 2. a(2) = 3 since prime(2) = 3 is a primitive root modulo prime(3) = 5 and also prime(3) = 5 is a primitive root modulo prime(2) = 3.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, New observations on primitive roots modulo primes, arXiv:1405.0290 [math.NT], 2014.
Programs
-
Mathematica
dv[n_]:=Divisors[n] n=0;Do[Do[If[Mod[(Prime[m])^(Part[dv[Prime[m+1]-1],i]),Prime[m+1]]==1,Goto[aa]],{i,1,Length[dv[Prime[m+1]-1]]-1}];Do[If[Mod[Prime[m+1]^(Part[dv[Prime[m]-1],j]),Prime[m]]==1,Goto[aa]],{j,1,Length[dv[Prime[m]-1]]-1}];n=n+1;Print[n," ",Prime[m]];Label[aa];Continue,{m,1,256}]
Comments