cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243412 Number of Dyck paths of semilength n avoiding the consecutive steps UDUUDU (with U=(1,1), D=(1,-1)).

Original entry on oeis.org

1, 1, 2, 5, 13, 37, 112, 352, 1136, 3742, 12529, 42513, 145868, 505234, 1764157, 6203370, 21947490, 78072209, 279062937, 1001803617, 3610366030, 13057141261, 47373444827, 172381857939, 628944880851, 2300410562946, 8433110899963, 30980398420830, 114034887644860
Offset: 0

Views

Author

Alois P. Heinz, Jun 04 2014

Keywords

Crossrefs

Column k=0 of A243366.
Column k=45 of A243753.

Formula

Recurrence: (n+1)*(n+2)*(817*n^7 - 24387*n^6 + 285094*n^5 - 1647261*n^4 + 4787137*n^3 - 5628540*n^2 - 1552284*n + 6122952)*a(n) = (n+1)*(1634*n^8 - 47957*n^7 + 542786*n^6 - 2900786*n^5 + 6449435*n^4 + 3292426*n^3 - 41693904*n^2 + 63681552*n - 24491808)*a(n-1) + 3*n*(2451*n^8 - 73161*n^7 + 850153*n^6 - 4796076*n^5 + 12712261*n^4 - 7403931*n^3 - 33886709*n^2 + 64848252*n - 30495792)*a(n-2) - (8170*n^9 - 256125*n^8 + 3222045*n^7 - 20734872*n^6 + 70290303*n^5 - 101053185*n^4 - 62925628*n^3 + 384515340*n^2 - 387509328*n + 86320944)*a(n-3) + 3*(4085*n^9 - 134190*n^8 + 1787518*n^7 - 12351340*n^6 + 46074358*n^5 - 78991732*n^4 - 20763151*n^3 + 311152124*n^2 - 443676900*n + 188645328)*a(n-4) - (8170*n^9 - 280635*n^8 + 3929664*n^7 - 28666521*n^6 + 113672493*n^5 - 215520840*n^4 + 17606573*n^3 + 648300408*n^2 - 951192216*n + 363243312)*a(n-5) + 2*(4085*n^9 - 146445*n^8 + 2159949*n^7 - 16771674*n^6 + 71463813*n^5 - 145058547*n^4 - 9273941*n^3 + 640553178*n^2 - 1114925472*n + 598040712)*a(n-6) + (8170*n^9 - 305145*n^8 + 4669113*n^7 - 37343346*n^6 + 161916525*n^5 - 325736907*n^4 - 55373986*n^3 + 1484026824*n^2 - 2345628420*n + 1080273456)*a(n-7) + (6536*n^9 - 253920*n^8 + 4039503*n^7 - 33528057*n^6 + 150519924*n^5 - 315037869*n^4 - 26105741*n^3 + 1400728128*n^2 - 2351058696*n + 1235710944)*a(n-8) + (n-9)*(6536*n^8 - 204900*n^7 + 2511339*n^6 - 14959584*n^5 + 41778954*n^4 - 25451829*n^3 - 129319352*n^2 + 282520572*n - 168563664)*a(n-9) + 3*(n-10)*(n-9)*(817*n^7 - 18668*n^6 + 155929*n^5 - 559001*n^4 + 589888*n^3 + 1351597*n^2 - 3752130*n + 2343528)*a(n-10). - Vaclav Kotesovec, Jun 05 2014
a(n) ~ c * d^n / n^(3/2), where d = 3.8821590268628506747194368909643384060073824... is the root of the equation d^8 - 2*d^7 - 10*d^6 + 12*d^5 - 5*d^4 - 2*d^3 - 5*d^2 - 8*d - 3 = 0, and c = 0.56162811676670317653498040062091920282038218... . - Vaclav Kotesovec, Jun 05 2014