A243441 Primes p such that p + A000120(p) is also a prime, where A000120 = sum of digits in base 2 = Hamming weight.
2, 3, 5, 17, 43, 163, 277, 311, 347, 373, 461, 479, 571, 643, 673, 821, 853, 857, 881, 977, 983, 1013, 1093, 1103, 1117, 1181, 1223, 1297, 1427, 1433, 1439, 1481, 1523, 1607, 1613, 1621, 1823, 1861, 1871, 1873, 2003, 2083, 2281, 2333, 2393, 2417, 2467, 2549
Offset: 1
Examples
2 + digitsum(2,base=2) = 2 + digitsum(10) = 2 + 1 = 3, which is prime. 3 + digitsum(11) = 3 + 2 = 5. 5 + digitsum(101) = 5 + 2 = 7. 17 + digitsum(10001) = 17 + 2 = 19. 43 + digitsum(101011) = 43 + 4 = 47.
Links
- Anthony Sand, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Mathematica
Select[Prime@ Range@ 400, PrimeQ[# + Total@ IntegerDigits[#, 2]] &] (* Michael De Vlieger, Nov 06 2018 *)
-
PARI
lista(lim) = forprime(p=2,lim, if (isprime(p+hammingweight(p)), print1(p, ", "))); \\ Michel Marcus, Jun 10 2014
Extensions
Name edited by M. F. Hasler, Nov 07 2018