cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243445 Decimal expansion of the polar angle of the cone circumscribed to a regular dodecahedron from one of its vertices.

Original entry on oeis.org

1, 2, 0, 5, 9, 3, 2, 4, 9, 8, 6, 8, 1, 4, 1, 3, 4, 3, 7, 5, 0, 3, 9, 2, 3, 3, 6, 1, 7, 3, 3, 0, 9, 1, 0, 9, 4, 4, 0, 0, 3, 3, 1, 7, 4, 2, 6, 6, 3, 6, 9, 6, 0, 6, 5, 1, 3, 2, 9, 9, 7, 5, 5, 0, 4, 2, 2, 9, 9, 8, 7, 5, 3, 3, 0, 9, 7, 2, 0, 9, 2, 9, 9, 1, 6, 2, 7
Offset: 1

Views

Author

Stanislav Sykora, Jun 06 2014

Keywords

Comments

The angle is in radians.

Examples

			1.20593249868141343750392336173309109440033174266369606513299755...
		

Crossrefs

Cf. A001622 (phi), A003881 (octahedron), A195695 (tetrahedron), A195696 (cube), A195723 (isosahedron).

Programs

  • Mathematica
    RealDigits[ArcCos[1/(GoldenRatio Sqrt[3])],10,120][[1]] (* Harvey P. Dale, May 17 2016 *)
  • PARI
    acos(2/(1+sqrt(5))/sqrt(3))

Formula

arccos(1/(phi*sqrt(3))), where phi = A001622.
arctan(phi^2), where phi = A001622. - Jon Maiga, Nov 11 2018