A243466 Number of ways 4 domicules can be placed on an n X n square.
0, 0, 0, 58, 18343, 362643, 2911226, 14601844, 54738489, 168157793, 446728228, 1062085146, 2312934779, 4690690399, 8967633918, 16312226288, 28436620141, 47781858189, 77746670984, 122966217718, 189647543823, 285968959211, 422550971074, 613006835244
Offset: 0
Examples
a(3) = 58: +-----+ +-----+ +-----+ +-----+ |o-o o| |o o | |o-o o| |o-o | | / | | \ \ | | || | | |o o | |o o o| |o o| |o o o| || | || | || | || X | |o o-o| |o o-o| |o o-o| |o o o| +-----+ +-----+ +-----+ +-----+ ... .
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Crossrefs
Column k=4 of A243424.
Programs
-
Maple
a:= n-> `if`(n<4, [0$3, 58][n+1], ((((((((64*n-384)*n-448)*n +6480)*n-4984)*n-35304)*n+50017)*n+61647)*n-104802)/6): seq(a(n), n=0..50);
Formula
G.f.: -x^3*(196*x^9 -1380*x^8 -1019*x^7 +21464*x^6 -32073*x^5 -77546*x^4 +302915*x^3 +199644*x^2 +17821*x +58) / (x-1)^9.
a(n) = (-104802 +61647*n +50017*n^2 -35304*n^3 -4984*n^4 +6480*n^5 -448*n^6 -384*n^7 +64*n^8)/6 for n>=4, a(3) = 58, a(n) = 0 for n<3.