A243474 Number of isoscent sequences of length n with exactly one descent.
1, 6, 29, 124, 499, 1933, 7307, 27166, 99841, 363980, 1319404, 4763927, 17155264, 61672791, 221499015, 795198010, 2854898575, 10253237150, 36846414395, 132518215788, 477049025009, 1719101735260, 6201858101192, 22399768386170, 80998670324341, 293244129636085
Offset: 3
Keywords
Examples
a(4) = 6: [0,0,1,0], [0,0,2,0], [0,0,2,1], [0,1,0,0], [0,1,0,1], [0,1,1,0].
Links
- Joerg Arndt and Alois P. Heinz, Table of n, a(n) for n = 3..1000
Crossrefs
Column k=1 of A242352.
Programs
-
Mathematica
b[n_, i_, t_] := b[n, i, t] = If[n<1, 1, Expand[Sum[If[jJean-François Alcover, Feb 09 2015, after A242352 *)
Formula
Recurrence: 2*(n+1)*(n+2)*(2*n+3)*(12397*n^7 - 189057*n^6 + 1186699*n^5 - 4027875*n^4 + 7966576*n^3 - 8920548*n^2 + 4726368*n - 164160)*a(n) = 2*(n+1)*(2*n + 1)*(74382*n^8 - 997975*n^7 + 5169531*n^6 - 12939205*n^5 + 13804539*n^4 + 4032932*n^3 - 23655372*n^2 + 20014848*n - 1477440)*a(n-1) - 2*(347116*n^9 - 3797013*n^8 + 13426236*n^7 - 10697862*n^6 - 45689304*n^5 + 115458855*n^4 - 47561392*n^3 - 85364460*n^2 + 57311424*n - 1477440)*a(n-2) - (1822359*n^10 - 28485611*n^9 + 180879786*n^8 - 605859318*n^7 + 1141835871*n^6 - 1127112699*n^5 + 285267312*n^4 + 592120604*n^3 - 783881808*n^2 + 409889664*n - 50388480)*a(n-3) - 2*(247940*n^10 - 5628293*n^9 + 49022694*n^8 - 212356554*n^7 + 479773884*n^6 - 459074385*n^5 - 250049558*n^4 + 1020252416*n^3 - 830684880*n^2 + 423719136*n - 432293760)*a(n-4) + 2*(n-4)*(2070299*n^9 - 30481583*n^8 + 181205557*n^7 - 572698754*n^6 + 1060137133*n^5 - 1157719883*n^4 + 582047111*n^3 + 378941580*n^2 - 897279300*n + 403878960)*a(n-5) + 6*(n-5)*(n-4)*(768614*n^8 - 9316516*n^7 + 43281239*n^6 - 101853145*n^5 + 131895047*n^4 - 75435871*n^3 - 41445228*n^2 + 118112292*n - 101468592)*a(n-6) + 117*(n-6)*(n-5)*(n-4)*(12397*n^7 - 102278*n^6 + 312694*n^5 - 496340*n^4 + 374821*n^3 + 103402*n^2 - 440568*n + 590400)*a(n-7). - Vaclav Kotesovec, Jun 06 2014
a(n) ~ c * d^n / n^(3/2), where d = 1/6*(847+33*sqrt(33))^(1/3) + 44/(3*(847+33*sqrt(33))^(1/3)) + 2/3 = 3.802619145513318... is the root of the equation 4*d^3 - 8*d^2 - 24*d - 13 = 0 and c = sqrt(2565 + 2*(3*(692007507 - 5151139*sqrt(33)))^(1/3) + 2*(3*(692007507 + 5151139*sqrt(33)))^(1/3)) / (4*sqrt(21*Pi)) = 2.695007157151120689163873119078514352395445402... . - Vaclav Kotesovec, Jun 06 2014, updated Mar 16 2024