cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243521 The number of states in a Tower of Hanoi puzzle with three pegs and n discs, where a larger disc can be placed directly on top of a smaller one at most once per peg.

Original entry on oeis.org

1, 3, 12, 57, 300, 1701, 10206, 63825, 411096, 2702349, 17992506, 120543561, 808224372, 5400815829, 35868103734, 236354531841, 1544182760496, 10001335837725, 64233753928722, 409298268016761, 2589206145139596
Offset: 0

Views

Author

Robert A. Beeler, Jun 05 2014

Keywords

Crossrefs

Terms in product are A000325.

Programs

  • PARI
    Vec((1 - 37*x + 607*x^2 - 5800*x^3 + 35617*x^4 - 146023*x^5 + 400653*x^6 - 711780*x^7 + 746142*x^8 - 353412*x^9) / ((1 - 3*x)^4*(1 - 4*x)^3*(1 - 5*x)^2*(1 - 6*x)) + O(x^30)) \\ Colin Barker, Jul 18 2019
  • Sage
    for n in range(11):
        t=0
        for k in range(n+1):
            for j in range(n-k+1):
                t=t+((Combinations(n,k).cardinality())*(Combinations(n-k,j).cardinality())*((2^k)-k)*((2^j)-j)*((2^(n-k-j))-n+k+j));
        print(t)
    

Formula

a(n) = Sum_{i+j+k=n, i >= 0, j >= 0, k>= 0} {n choose i, j, k}(2^i-i)(2^j-j)(2^k-k).
a(n) = 6^n-3*n*5^{n-1}+3*n*(n-1)*4^{n-2}-n*(n-1)*(n-2)3^{n-3}.
From Colin Barker, Jul 18 2019: (Start)
G.f.: (1 - 37*x + 607*x^2 - 5800*x^3 + 35617*x^4 - 146023*x^5 + 400653*x^6 - 711780*x^7 + 746142*x^8 - 353412*x^9) / ((1 - 3*x)^4*(1 - 4*x)^3*(1 - 5*x)^2*(1 - 6*x)).
a(n) = 40*a(n-1) - 715*a(n-2) + 7522*a(n-3) - 51583*a(n-4) + 240964*a(n-5) - 776637*a(n-6) + 1705554*a(n-7) - 2442744*a(n-8) + 2060640*a(n-9) - 777600*a(n-10) for n>9.
(End)