cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243578 Integers n of the form 8k+7 that are sum of distinct squares of the form m, m+1, m+2, m+4, where m == 1 (mod 4).

Original entry on oeis.org

39, 191, 471, 879, 1415, 2079, 2871, 3791, 4839, 6015, 7319, 8751, 10311, 11999, 13815, 15759, 17831, 20031, 22359, 24815, 27399, 30111, 32951, 35919, 39015, 42239, 45591, 49071, 52679, 56415, 60279, 64271, 68391, 72639, 77015, 81519, 86151, 90911, 95799
Offset: 1

Views

Author

Walter Kehowski, Jun 08 2014

Keywords

Comments

If n is of the form 8k+7 such that n=a^2+b^2+c^2+d^2 with gap pattern 112, then [a,b,c,d]=[1,2,3,5]+[4*i,4*i,4*i,4*i], i>=0.

Examples

			a(5)=64*5^2-40*5+15=1415 and m=4*5-3=17, and 1415=17^2+18^2+19^2+21^2.
		

Crossrefs

Programs

  • Magma
    I:=[39,191,471]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..60]]; // Vincenzo Librandi, Sep 13 2015
  • Maple
    A243578 := proc(n::posint) return 64*n^3-40*n+15 end;
  • Mathematica
    LinearRecurrence[{3, -3, 1}, {39, 191, 471}, 50] (* Vincenzo Librandi, Sep 13 2015 *)
  • PARI
    Vec(-x*(3*x+13)*(5*x+3)/(x-1)^3 + O(x^100)) \\ Colin Barker, Sep 12 2015
    

Formula

a(n) = 64*n^2-40*n+15.
From Colin Barker, Sep 12 2015: (Start)
a(n) = 3*a(n-1)-3*a(n-2)+a(n-3) for n>3.
G.f.: -x*(3*x+13)*(5*x+3) / (x-1)^3.
(End)