A243578 Integers n of the form 8k+7 that are sum of distinct squares of the form m, m+1, m+2, m+4, where m == 1 (mod 4).
39, 191, 471, 879, 1415, 2079, 2871, 3791, 4839, 6015, 7319, 8751, 10311, 11999, 13815, 15759, 17831, 20031, 22359, 24815, 27399, 30111, 32951, 35919, 39015, 42239, 45591, 49071, 52679, 56415, 60279, 64271, 68391, 72639, 77015, 81519, 86151, 90911, 95799
Offset: 1
Examples
a(5)=64*5^2-40*5+15=1415 and m=4*5-3=17, and 1415=17^2+18^2+19^2+21^2.
Links
- Walter Kehowski, Table of n, a(n) for n = 1..20737
- J. Owen Sizemore, Lagrange's Four Square Theorem
- R. C. Vaughan, Lagrange's Four Square Theorem
- Eric Weisstein's World of Mathematics, Lagrange's Four-Square Theorem
- Wikipedia, Lagrange's four-square theorem
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Magma
I:=[39,191,471]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..60]]; // Vincenzo Librandi, Sep 13 2015
-
Maple
A243578 := proc(n::posint) return 64*n^3-40*n+15 end;
-
Mathematica
LinearRecurrence[{3, -3, 1}, {39, 191, 471}, 50] (* Vincenzo Librandi, Sep 13 2015 *)
-
PARI
Vec(-x*(3*x+13)*(5*x+3)/(x-1)^3 + O(x^100)) \\ Colin Barker, Sep 12 2015
Formula
a(n) = 64*n^2-40*n+15.
From Colin Barker, Sep 12 2015: (Start)
a(n) = 3*a(n-1)-3*a(n-2)+a(n-3) for n>3.
G.f.: -x*(3*x+13)*(5*x+3) / (x-1)^3.
(End)
Comments